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issues can be resolved by employing network coding in the network, but the high computational and 
storage costs of such schemes prohibit their implementation in many devices, in particular, IoT devices 
that typically have low computational power and very limited storage.
	 A BATS code consists of an outer code and an inner code. As a matrix generalization of a 
fountain code, the outer code generates a potentially unlimited number of batches, each of which 
consists of a certain number (called the batch size) of coded packets. The inner code comprises (random) 
linear network coding at the intermediate network nodes, which is applied on packets belonging to the 
same batch. When the batch size is 1, the outer code reduces to an LT code (or Raptor code if precode 
is applied), and network coding of the batches reduces to packet forwarding. BATS codes preserve 
the salient features of fountain codes, in particular, their rateless property and low encoding/decoding 
complexity. BATS codes also achieve the throughput gain of random linear network coding. This book 
focuses on the fundamental features and performance analysis of BATS codes, and includes some 
guidelines and examples on how to design a network protocol using BATS codes.
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ABSTRACT
This book discusses an efficient random linear network coding scheme, called BATched Sparse
code, or BATS code, which is proposed for communication through multi-hop networks with
packet loss. Multi-hop wireless networks have applications in the Internet of Things (IoT),
space, and under-water network communications, where the packet loss rate per network link is
high, and feedbacks have long delays and are unreliable. Traditional schemes like retransmission
and fountain codes are not sufficient to resolve the packet loss so that the existing communica-
tion solutions for multi-hop wireless networks have either long delay or low throughput when
the network length is longer than a few hops. These issues can be resolved by employing net-
work coding in the network, but the high computational and storage costs of such schemes
prohibit their implementation in many devices, in particular, IoT devices that typically have low
computational power and very limited storage.

A BATS code consists of an outer code and an inner code. As a matrix generalization
of a fountain code, the outer code generates a potentially unlimited number of batches, each
of which consists of a certain number (called the batch size) of coded packets. The inner code
comprises (random) linear network coding at the intermediate network nodes, which is applied
on packets belonging to the same batch. When the batch size is 1, the outer code reduces to
an LT code (or Raptor code if precode is applied), and network coding of the batches reduces
to packet forwarding. BATS codes preserve the salient features of fountain codes, in particu-
lar, their rateless property and low encoding/decoding complexity. BATS codes also achieve the
throughput gain of random linear network coding. This book focuses on the fundamental fea-
tures and performance analysis of BATS codes, and includes some guidelines and examples on
how to design a network protocol using BATS codes.

KEYWORDS
network coding, BATS code, multi-hop network, packet loss, degree distribution,
finite-length analysis, BP decoding, inactivation decoding
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Preface
Driven by new applications, both the scale and the scope of network communications are going
to expand significantly in the next several decades. The Internet of Things (IoT) is going to con-
nect tens or hundreds of billions of devices together into networks. New network infrastructures
like space communication networks formed by low-orbit satellites or unmanned aerial vehicles
(UAVs) are being built and tested. The exploration of outer space and deep sea requires network
communications in areas that have not been covered before.

One of the trends is that communication networks will employ more and more wireless
links than today. Most existing communication networks, for example WiFi, cellular networks,
and satellite networks, involve at most two wireless links, namely the first hop and the last hop.
In contrast, multi-hop wireless networks will dominate many new applications.

Wireless links suffer from packet loss due to fading, shadowing, hand off, interference, and
other effects. Different from packet loss due to congestion, packet loss due to the above effects
in wireless links cannot be reduced by rate control. Extensive research on TCP for combating
these wireless link effects was conducted around the year 2000, whenWiFi and cellular data were
becoming popular. For multi-hop wireless networks, however, modifying TCP cannot prevent
the significant rate decrease as the number of hops increases. It is therefore necessary to design
new network communication protocols based on a different philosophy for combating packet
loss.

Network coding provides a general theory for designing network protocols and achieves
the theoretical communication limit of wireless networks with packet loss. In this book, we
discuss an efficient random linear network coding scheme called BATched Sparse code, or BATS
code. Proposed for communication through networks with packet loss, a BATS code consists of
an outer code and an inner code. As a matrix generalization of a fountain code, the outer code
generates a potentially unlimited number of batches, each of which consists of a certain number
(called the batch size) of coded packets. The inner code comprises (random) linear network
coding at the intermediate network nodes, which is applied on the packets belonging to the
same batch. When the batch size is 1, the outer code reduces to an LT code (or Raptor code
if precode is applied), and network coding of the batches reduces to packet forwarding. BATS
codes preserve the salient features of fountain codes, in particular, their rateless property and
low encoding/decoding complexity. BATS codes also achieve the throughput gain of random
linear network coding.

Applying network coding for communication networks is much more complicated than
applying a new channel coding technique for wireless communications, for example, which in-
volves only a modification of the physical layer of the network protocol and is transparent to all
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the higher layers. When applying network coding, however, both the transport layer and the
network layer must be completely redesigned, and the link/MAC layer and even the physical
layer need to be properly tuned to optimize the performance. For a particular application, a
network protocol based on BATS code must be designed with specific requirements and con-
straints. In this book, we provide guidelines and examples on how to design a network protocol
using BATS codes.

ORGANIZATION
In Chapter 1, some background information is provided and various schemes for multi-hop
networks are compared. We discuss in detail the fundamentals of the design and analysis of
encoding, recoding, and decoding of BATS codes in Chapter 2–8. Chapter 2 presents the ba-
sic approaches to BATS code encoding and decoding. Chapter 3 introduces a simple BATS
code network protocol. Chapter 4 discusses some advanced recoding techniques. The first four
chapters are essential for readers who want to conduct BATS code-related research.

Chapters 5–9 comprise the major technical contents for the performance analysis and
coding design for BATS codes. Chapter 5 analyzes the asymptotic performance of BP decoding.
Chapter 6 discusses the achievable rates of BATS codes. Chapter 7 focuses on the finite-length
analysis of BP decoding. Chapter 8 is devoted to inactivation decoding, including the finite-
length analysis and practical design. Chapter 9 discusses how to apply BATS codes in a general
network topology.

For readers with different interests, this book can be read in part as follows. To learn
how to design a network protocol using BATS codes, Chapter 3 is the place to start with, and
Chapters 4 and 9 include some further discussions. To understand how a degree distribution is
designed, Section 5.1 should be read followed by Chapter 6 and Section 7.4. To study finite-
length analysis, the first three sections of Chapter 7 and Section 8.2 should be read.

A major part of this book is rewriting and unifying the previous works of the authors
[54, 95, 96, 97, 98, 101, 102]. There is also a significant part of the book consisting of new
results that have not been published before. These include Chapter 4 on advanced recoding
techniques, Sections 6.3 and 6.4 on BATS codes for multiple rank distributions, and Section 8.3
on practical design of inactivation decoding. Variations of BATS codes, e.g., BATS codes with
variable batch sizes [98], quasi-universal BATS codes [91], and BATS codes with unequal error
protection [90], are not discussed in this book.

Shenghao Yang and Raymond W. Yeung
August 2017



xvii

Acknowledgments
We thank Jun Ma, Haiwen Cao, Yu Liu, Hoover Yin, and Zhiheng Zhou for reading the drafts
of the manuscript.

This work was partially supported by the NSFC Grant No. 61471215, and the University
Grants Committee of the Hong Kong Special Administrative Region, China under Project No.
AoE/E-02/08.

Shenghao Yang and Raymond W. Yeung
August 2017





1

C H A P T E R 1

Preliminaries
1.1 COMMUNICATIONTHROUGHNETWORKSWITH

PACKETLOSS
One fundamental task of communication networks is to distribute a bulk of digital data, called
a file, from a source node to one or multiple destination nodes. We consider this file distribution
problem in packet networks, where the file is divided into multiple packets, referred to as the
input packets. The packets transmitted on the network links may suffer from various distortions
(e.g., errors and malicious modifications). Here we assume that they are either correctly received
or lost. A network link with packet loss is also called a lossy link.

Packet loss occurs due to various reasons.The communicationmedia of a network linkmay
have noise, fading and interference, which result in the failure of the physical layer decoding. A
falsely decoded packet can be detected and deleted, and hence regarded as a packet loss. Usu-
ally, wireless communication links, e.g., satellite/underwater communications, wireless LAN
and mobile communication networks, are more vulnerable to such packet losses due to inter-
ference and fading than wireline communication links, e.g., fiber and coaxial cable. Even when
the network links are perfect, packet loss may occur due to faulty network hardware/software,
insufficient processing power, or buffer overflow.

The network topology considered here can be very general. In our network model, there
are three types of nodes: source nodes, destination nodes, and intermediate nodes.

• A source node has the file (or the input packets) for transmission.

• A destination node demands the file. A network with a single destination node is called a
unicast and a network with multiple destination nodes that demand the same file is called
a multicast.

• An intermediate node, also called a relay node, does not demand the file but helps the
transmission of the file.

Figure 1.1 gives the simplest example of a network that consists of all the three types of network
nodes. A network with at least one intermediate node is also called a multi-hop network. We
focus on the transmission of a single file for both unicast and multicast in multi-hop networks,
where the intermediate nodes have a constant amount of computation power and storage (buffer).

A multi-hop network can be found in many applications, for example, wireless mesh/ad
hoc networks, satellite communications, and underwater communications. An emerging trend
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RSrc Dst

Figure 1.1: A three-node network. Node Src is the source node, node Dst is the destination
node, and node R is the intermediate node that does not demand the input packets. Network
links exist only between two neighboring nodes. Both links have packet loss rate �.

is that more and more wireless networks will deploy relays. Both wireless LAN and 5G mobile
networks will use millimeter waves (30–60 GHz) to support high-speed transmission, which
travel solely by line-of-sight and are blocked by building walls [23]. To extend the network
coverage in indoor and urban environments, it would be necessary to deploy relays. Multi-hop
networks also exist in wireless sensor networks, Internet of vehicles, etc.

Routing is not a good solution for multi-hop networks with packet loss. Consider a line
networkwhich consists of a source node, a destination node and a sequence of consecutively con-
nected intermediate nodes. For example, the three-node network in Figure 1.1 is a line network
with two hops. Suppose each network link in the line network can transmit one packet per unit
time and has a packet loss rate 0:2. The throughput of the line network with l hops using routing
is 0:8l , which decreases very fast even for a small l . For example, the throughput decreases to
0:512 when l D 3, and to 0:107 when l D 10.

The classical approaches for resolving packet loss in multi-hop networks include retrans-
mission and erasure coding. As we will discuss later in this chapter, both approaches are effective
only for special cases. As a consequence, in most of the existing networking practices, (i) a great
amount of effort has been put in the physical layer so that the communication links have as low
packet loss rate as possible, and (ii) only a small number of network links (typically, at most
two) use wireless media, which may incur relatively high packet loss rate, while all the other
links use more reliable wireline media like fiber. These classical approaches, however, cannot
guarantee feasible performance for many practical multi-hop networks, for example networks
with a relatively large number of concatenated lossy links (e.g., 10 or more) and networks with
a long link-by-link delay.

In this monograph, we study how to effectively communicate throughmulti-hop networks
with packet loss. We assume that an intermediate node can only store a fixed number of packets and
perform a fixed amount of operations on the stored packets per unit time. These assumptions make
it possible for our schemes to be implemented in real network devices. For many cases, (e.g., a
network with a large number of concatenated lossy links), it is necessary to use network coding to
obtain a reasonable throughput, where an intermediate network node may transmit new packets
generated using the packets it has received. In contrast, existing network protocols mostly use
store-and-forward at an intermediate network node, i.e., a network node only transmits the
packets that it has received.



1.2. LINK-BY-LINKRETRANSMISSION 3
In the remainder of this chapter, we will review the traditional approaches for multi-hop

transmission and then give a brief introduction to network coding. In this book, we assume the
following problem settings.

1. We represent a packet by a sequence of finite field symbols. Specifically, fix a finite field
Fq with size q, called the base field. A packet is denoted by a column vector in FT

q , which
has T symbols in the base field.1

2. Unless otherwise specified, we assume that time is slotted. A network transmission starts
at time 0, and one packet is sent on a link per time slot.

1.2 LINK-BY-LINKRETRANSMISSION
Consider the networks where an intermediate network node only stores and forwards the packets
it has received. Retransmission is the most widely adopted approach for resolving packet loss in
existing communication protocols, e.g., TCP, wireless LAN, and LTE.

When using retransmission, a network node does not remove a packet right after it has
been transmitted on one of its outgoing links. Rather, it waits for a positive feedback indicating
that the packet has been received correctly by the node(s) in the next hop. If no positive feedback
is received after a certain time or a negative feedback is received, the network node retransmits
the same packet (called a retry). This retransmission may be repeated for a preset number of
times or until a positive feedback is received.

Although retransmission has been widely adopted and has demonstrated stable perfor-
mance on the Internet, it has clear issues for general scenarios which limit the application of
retransmission for reliable communication in, for example, wireless multi-hop networks. We
will discuss the issues of retransmission by using several examples, but these issues also exist in
general networks.

1.2.1 RETRANSMISSION INLINENETWORKS
In the ideal case that (i) feedback is reliable and has no communication cost, and (ii) each in-
termediate node has unlimited storage, link-by-link retransmission can achieve the network
transmission capacity for line networks with packet loss. In the network in Figure 1.1, suppose
both links have packet loss rate � and one packet is sent on each link per unit time. Using link-
by-link retransmission, the achievable throughput is 1 � �, which can be seen by using a queuing
theoretic argument. Moreover, using the cut-set bound from information theory, we see that
1 � � is indeed the network capacity.

In addition to the transmission rate, an important performance measure is the transmission
delay, i.e., the time at which the destination node can decode the whole file. Suppose the packet
loss rate on all the network links is �. We know that on average, it takes 1=.1 � �/ transmissions
1Typically, we use q D 28, i.e., we use 8 bits (a byte) to represent a finite field symbol.
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for a packet to be received by the node in the next hop. Therefore, when transmitting a single
packet, the average transmission delay is l=.1 � �/ time slots for a line network with l hops.
When transmitting a sequence of K packets, the first packet takes l=.1 � �/ time slots to reach
the destination node, and the remaining K � 1 packets take at least .K � 1/=.1 � �/ time slots
to be received by the destination node. Therefore, a lower bound on the expected transmission
delay is .K C l � 1/=.1 � �/ time slots for any transmission scheme.

We use the three-node network as an example to analyze the transmission delay and the
storage requirement at the relay node. Let Xn be the number of packets stored at node R in
Figure 1.1 at time n. First, X0 has the value 0. At each of the subsequent time slot 0 < i � n,
with probability 1 � �, a new packet is added to the storage, and if Xi�1 > 0 (i.e., the buffer
is not empty at the last time slot), with probability 1 � � a packet is removed from the storage
(in the case that the packet is successfully received by node Dst). The dynamics of Xn can be
analyzed as a randomwalk with a reflecting boundary at 0, and we have EŒXn� D �.

p
n�.1 � �//

(see [58]).
For a file of K packets, the source node needs at least K=.1 � �/ time slots to complete

the transmission. When n D K=.1 � �/, the expected number of packets storaged at node R is
�.

p
�K/.

• The storage at node R must increase with K so that all the packets can be received by the
destination node. For streaming applications with an unbounded number of packets, the
required storage is also unbounded.

• To complete the transmission of these �.
p

�K/ packets in the storage, node R uses
�.

p
�K=.1 � �// extra time slots. So the transmission delay is K=.1 � �/ C �.

p
�K=.1 �

�// time slots.

For a line network with l > 1 hops, we can repeat the above analysis hop-by-hop. Note
that an intermediate node may not transmit the K packets consecutively since new packets may
not arrive after transmitting all the previous packets, but it still takes at least K=.1 � �/ time
slots (which may not be consecutive) to complete the transmission. So our analysis at node R
becomes an upper bound, i.e., the expected number of packets stored at an intermediate node
is O.

p
�K/ and the end-to-end expected transmission delay is K=.1 � �/ C O.l

p
�K=.1 � �//

time slots. Note that in terms of transmission delay, the link-by-link retransmission scheme is
optimal.

Buffer Overflow
In practice, an intermediate node has a limited storage. An overflow occurs when the storage is
full and a new packet is received. We may delete the new packet or replace an existing packet by
the new one. One mechanism for alleviating buffer overflow is to stop the retransmission and
discard the packet after a preset number of retries. Such a mechanism has been applied in many
link layer protocols. For example, in the IEEE 802.11 MAC layer, the maximum number of
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retries is set to 4. Thus, retransmission with a finite storage at the intermediate network nodes
cannot guarantee the reliable transmission of every packet, even with ideal feedback.

Another mechanism for alleviating buffer overflow is to control the transmission rate of
the previous node. For example, when the MAC layer of a node sees that its buffer is going
to be full, it may issue a control message to the previous node to reduce the transmission rate.
In the existing Internet protocol stack, the rate control is not implemented hop-by-hop, but
end-to-end. TCP handles the end-to-end rate control to reduce the packet loss generated by
buffer overflow, and employs an end-to-end retransmission scheme to guarantee the reliable
transmission from the source node to the destination node.

Feedback Issues
Both link-by-link and end-to-end retransmissions, as well as rate control, however, require feed-
back, which may not be reliable/available and it incurs communication cost. In outer-space,
satellite and underwater communications, for example, the propagation delay of each hop is very
long, e.g., a few minutes, and feedback is unreliable and has a long delay. Moreover, feedback
incurs communication resources. In LTE, a dedicated physical channel is allocated for feedback
(as well as other control messages) and a stronger error correction code is used to protect the
feedback messages. In WLAN, feedback shares the same physical channel with data messages
and takes up a fraction of the total transmission time. Therefore, in practical communication
systems, retransmission based reliable transmission schemes not only suffer from long delay but
also are far from being throughput optimal.

1.2.2 WIRELESS ERASURERELAYNETWORK
A wireless erasure relay (WER) network, illustrated in Figure 1.2, is similar to the three-node
network except that there exists an extra link between node Src and node Dst. Here we assume
that these links share the same physical communication media and node Src and node R apply a
TDMA strategy so that they do not transmit simultaneous at any time slot. The transmission of
node Src is broadcasting so that the same packet is transmitted on both its outgoing links. Node
Dst is supposed to be much further away from node Src than node R, and hence the reception
at node Dst from node Src is usually not as reliable as at node R. Therefore, we assume �1 > �.
(If �1 � �, the relay node is not useful because it is always better to use (Src, Dst) than (R, Dst)
to transmit a packet.)

The capacity of this network is 1���1

1C�1
[61], which can be achieved by the following retrans-

mission scheme when all the nodes can cooperate ideally.2 Node Src keeps on retransmitting a
packet until either node R or node Dst receives it correctly. If node Dst receives the packet, node
R does nothing and node Src transmits another packet. If node R receives the packet but node

2Note that when �1 D 1 (i.e., the link .Src; Dst/ cannot transmit anything), the capacity is .1 � �/=2, half of the similar
line network with 2 hops. The reason is that in the wireless relay network, both node R and node Src use only half of the
time for transmission; while in the line networks, we assume all the links have dedicated communication media.
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R

Src Dst

ϵ

ϵ1

ϵ

Figure 1.2: A wireless erasure relay network. Node Src is the source node, node Dst is the desti-
nation node, and node R is the intermediate node that does not demand the input packets. The
links .Src; R/ and .R; Dst/ have packet loss rate �, the link .Src; Dst/ has packet loss rate �1.
One packet is sent on each link per time slot.

Dst does not, node R transmits the packet it has received to node Dst by retransmission. After
node Dst receives the packet, node Src continues to transmit another packet. The optimality of
the retransmission scheme depends on the existence of ideal feedback for all links.

The above cooperative scheme, however, requires ideal feedback among all nodes. In prac-
tice, a higher loss rate on the .Src; Dst/ link usually means the feedback on the reverse link is
also not reliable. We will introduce later in this chapter a coding approach that does not require
cooperation among the nodes.

1.2.3 RETRANSMISSIONFORMULTICAST
Here we use an example to show that, even with ideal feedback (instantaneous, reliable and cost
free), retransmission can be far from optimal as the number of destination nodes increases. Note
that though we use a single-hop network in the example, the same issue occurs in a multi-hop
network.

Src

Figure 1.3: An example of wireless multicast.The source node Src uses a wireless communication
media sends the same message to all the destination nodes. Suppose all the destination nodes
experience the same packet loss rate �, and the packet losses are independent among all the
destination nodes.

Consider the wireless network in Figure 1.3. Suppose the source node has a packet to
transmit using retransmission, and the feedback from all the destination nodes is instantaneous,
reliable and cost free. Let N be the number of destination nodes and let Ti , 1 � i � N , be the
time used by the i-th destination node to receive the packet. We know that PrfTi � tg D �t�1
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for t � 1. The time used by the source node to complete the transmission of a packet is T �.N / D

maxfT1; : : : ; TN g, and

PrfT �.N / � tg D 1 � PrfT �.N / < tg

D 1 � PrfTi < t; i D 1; : : : ; N g

D 1 �

NY
iD1

PrfTi < tg

D 1 � .1 � �t�1/N : (1.1)

When the number of users N tends to 1, we see that PrfT �.N / � tg tends to 1, i.e., the source
node cannot stop transmitting after any fixed amount of time.

Now, let us show that
lim

N !1
EŒT �.N /� D 1: (1.2)

In other words, the achievable multicast rate of retransmission in this example decreases to 0 as
N ! 1. For all N , by Markov’s inequality, for all t � 0, we have

EŒT �.N /� � t PrfT �.N / � tg:

Then
lim

N !1
EŒT �.N /� � t lim

N !1
PrfT �.N / � tg D t;

implying (1.2).
The capacity of this network, however, is 1 � � for any given number of N , which can be

achieved using erasure codes (see the next section). In general, network codingmust be employed
to achieve the network capacity of multicast network (see Section 1.4).

1.3 ERASURECODING
To resolve the feedback related issues of the retransmission approach, researchers weremotivated
to consider erasure codes for networks with packet losses, which can reduce the use of feedbacks
for reliable transmission. Examples of erasure codes include Reed-Solomon codes and LDPC
codes. We use fountain codes as example to discuss how to use erasure codes to resolve packet loss.
The use of erasure codes for Internet generated a lot of research interests in the 1990s, where
fountain codes were the most celebrated achievement.

1.3.1 INTRODUCTIONTOFOUNTAINCODES
The concept of fountain codes first appeared in [9], where a potentially unlimited sequence of
encoded packets can be generated from a given set of input packets such that the original file can
be recovered from any subset of the encoded packets of size equal to or only slightly larger than
the number of input packets. Fountain codes do not have a fixed coding rate as Reed-Solomon
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codes and LDPC codes. A source node can keep transmitting the encoded packets of a fountain
code until the destination node decodes all the input packets correctly. Therefore, fountain codes
are also called rateless codes.

Examples of fountain codes include LT codes [40], Raptor codes [68] (a.k.a. online codes
[50]). LT codes are a class of (binary) fountain codes introduced in [40]. An LT encoder gener-
ates encoded packets from K input packets using a degree distribution ‰ D .‰0; ‰1; � � � ; ‰K/.
To generate an encoded packet, the degree distribution is sampled and an integer value d is
returned with probability ‰d . Then d distinct input packets are chosen randomly and they are
added together to yield the encoded packet. A robust soliton distribution for ‰ that guarantees
successful belief propagation decoding using any n encoded packets, where n is slightly larger than
K, is used. The encoding and decoding complexity of LT codes is O.log.K/T / bit-wise XOR
operations per packet, where T is the number of symbols in a packet.

Raptor codes [68] further reduce the encoding/decoding complexity of LT codes by pre-
coding. The input packets are first encoded by an erasure code, called the precode, the outputs
of which are called the intermediate packets. These intermediate packets are then encoded by a
variation of LT codes. This variation of LT codes only guarantees the recovery of a given fraction
of the intermediate packets and the precode code is capable of recovering all the input packets
in face of a given fraction of erasures.

Readers are referred to [46] for an excellent review of fountain codes and to [69] for more
detailed discussion on LT/Raptor codes.

1.3.2 FOUNTAINCODES FORWIRELESS BROADCAST
The rateless property makes fountain codes more suitable than retransmission for many scenar-
ios, in particular for multicast. Consider the wireless broadcast network studied in Figure 1.3, for
which retransmission cannot achieve the capacity when the number of destination node is larger
than one (see Section 1.2.3). Here we discuss a fountain code approach for broadcasting in this
wireless network, where the erasure rate for each destination node may not be the same. Instead
of transmitting the original input packets, the source node transmits the encoded packets of a
fountain code until all the destination nodes decode all the input packets correctly. No feed-
back is required for each individual transmitted packet. As long as the fountain code is capacity
achieving for erasure channels, this approach can achieve the capacity of wireless broadcasting
for an arbitrary number of destination nodes.

1.3.3 FOUNTAINCODES FORLINENETWORKS
Fountain codes were originally proposed for the Internet, where the end-to-end communica-
tions can be modeled as an erasure channel, i.e., a line network with one hop. Several schemes
have been discussed in the literature for using fountain codes in a line network with more than
one hop. However, all these schemes have various issues so that they cannot meet the require-
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ments stated in Section 1.1, namely that the intermediate nodes have a constant amount of
computation power and storage.

Consider a line network with l hops, where the packet loss rate is � on all the network
links. The source node or a relay node needs to transmit at least K=.1 � �/ packets so that the
node in the next hop receives at least K packets, which is a necessary requirement such that the
destination node can decode all the input packets.

Scheme 1.1 Link-by-link Encoding/Decoding The first scheme is to apply fountain codes
link-by-link [58]. The source node transmits the fountain code encoded packets. The first in-
termediate node completely decodes the input packets, and then encode the (decoded) input
packets using a fountain code. The same operation in the first link is repeated in the subsequent
links.

This scheme is capacity achieving and does not depend on link-by-link feedbacks for re-
liability.3 However, this scheme requires both the memory size and the computation cost at the
intermediate nodes to increase linearly with the file size for transmission. Moreover, the decod-
ing and encoding at an intermediate node generate significant processing delay that accumulates
hop-by-hop.

Assume that the decoding of fountain codes is instantaneous. From the decoding of the
file in the previous node, a relay node or the destination node needs to wait for t � K=.1 � �/

time slots before receiving sufficient coded packets for decoding the K input packets. A relay
node only starts to transmit after all the input packets have been decoded. So the overall time
taken by the destination node to decode all the input packets is lt � lK=.1 � �/ time slots.
Moreover, a relay node needs to buffer at least K packets to perform decoding and encoding.

Scheme 1.1 can be applied consecutively to achieve the capacity of the network. Suppose
that the source node has N files each of which has K packets. The link-by-link fountain code
scheme is used and each node uses only t time slots to transmit each file. The source node uses
the first t time slots to transmit the first file, and then switch to the second file in the second t

time slots. There is no extra delay between the transmission of different files. The overall time
used for decoding the N files is lt C .N � 1/t so that the transmission throughput converges to
1 � � as N; K ! 1.

Scheme 1.2 Re-encoding In another scheme, the source node transmits the fountain code
encoded packets, and an intermediate node re-encodes the packets it receives using fountain
codes without decoding [18, 58]. In other words, an intermediate node treats the packets it
receives as the input packets and apply a fountain code to encode the received packets. The
destination node decodes multiple layers of fountain codes.
3This scheme may not completely eliminate the requirement of feedbacks in network communication protocols. For example,
a feedback may be required when an intermediate node completely decodes the input packets. But it does not depends on
feedback for reliable transmission of each input packets.
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Compared with the first scheme, this scheme achieves the capacity and reduces the de-

coding cost at the intermediate node, but it does not change the fact that both the storage size
and the computation cost at the intermediate nodes need to increase linearly with the file size
for transmission. On the other hand, the decoding complexity at the destination node increases
linearly with the network length, since the number of layers of fountain codes required to be
decoded is equal to the network length. Moreover, each layer of fountain codes introduces extra
coding overheads, which increases linearly the network length.

In the re-encoding scheme, an intermediate node needs to collect at least K packets before
completing the re-encoding, so that the processing delay and the storage cost at relay nodes are
the same as the link-by-link scheme.

Scheme 1.3 Systematic Re-encoding This scheme is similar to the re-encoding scheme, but
a systematic fountain code is used at the intermediate nodes [58]. Specifically, all the received
packets at an intermediate node are transmitted as the systematic packets of the fountain code. In
addition to the systematic packets, an intermediate node also transmits a number of re-encoded
packets for compensating the packet loss in its outgoing link.

Compared with the re-encoding scheme, the systematic re-encoding scheme can reduce
the intermediate nodes storage and computation cost, as well as the transmission delay. In this
scheme, a relay node transmits K packets it receives from the previous node, and K=.1 � �/ �

K D K�=.1 � �/ packets it generates from re-encoding. Note that the relay node does not need
to keep all the received packets for recoding. For each received packet, the relay node can delete
it after transmitting and adding it to the re-encoded packets. Re-encoding is completed after
receiving K packets. So the storage cost at a relay node is K�=.1 � �/ packets, and each relay
node incurs an extra delay of K�=.1 � �/ time slots. The network transmission delay is K=.1 �

�/ C .l � 1/K�=.1 � �/.

1.3.4 FOUNTAINCODES FORWIRELESS ERASURERELAYNETWORK
We use the WER network in Figure 1.2 to illustrate some limitations of using fountain codes
in more complicated network topologies than line networks. Recall that the capacity of this
network is 1���1

1C�1
when �1 > �. The retransmission scheme we have discussed can achieve the

capacity, but it depends heavily on the availability of ideal feedback. To alleviate the need of
feedback for reliable communication, we will discuss two schemes using fountain codes.

The WER network is similar to the three-node network, except for (i) the extra link
.Src; Dst/, and (ii) the common wireless media for all links. Schemes 1.1 and 1.2 for the three-
node network can be applied on the WER network by ignoring the .Src; Dst/ link. In order to
benefit from the link .Src; Dst/, we need to modify these schemes without significantly increas-
ing the encoding/decoding/re-encoding complexity. These (modified) schemes, however, share
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the same issues of Schemes 1.1 and 1.2 for the three-node network. Moreover, these schemes
cannot achieve the capacity.

Scheme 1.4 The source node encodes the input packets by a fountain code and transmits the
fountain code encoded packets until node R can decode the input packets. Node R decodes and
re-encodes the (decoded) input packets using another fountain code, and transmits the fountain
code encoded packets until node Dst can decodes the input packets. Node Dst uses the packets
received from both Src and R for decoding.

In the above scheme, the source node needs to transmit t1 � K=.1 � �/ packets so
that node R can decode successfully the input packets, while node Dst can receive about
K.1 � �1/=.1 � �/ packets. To decode the input packets, node Dst needs to receive K � K.1 �

�1/=.1 � �/ extra packets from node R. Thus, node R needs to transmit t2 � .K � K.1 �

�1/=.1 � �//=.1 � �/ packets to meet the requirement. Therefore, the achievable rate of the
scheme is K=.t1 C t2/ � .1 � �/2=.1 � 2� C �1/, which is less than 1���1

1C�1
, the capacity. This

scheme is not optimal due to the transmission phase of Src. Specifically, the number of packets
transmitted by Src is superfluous because it is not necessary that R can decode all the input
packets.

Scheme 1.5 The source node encodes the input packets by a fountain code and transmits a
sufficient number of the fountain code encoded packets so that the packets received by R and/or
Dst together can jointly decode the input packets. Node R re-encodes the received packets
using another fountain code, and transmits the fountain code encoded packets until node Dst
can decode the received packets of R. Node Dst uses the packets received from Src and the
decoded packets from R for decoding.

In the above scheme, each packet transmitted by Src can be received by at least one of
R and Dst with probability 1 � ��1. Therefore, Src needs to transmit t 0

1 � K=.1 � ��1/ packets
so that the packets received by R and/or Dst together can jointly recover the input packets.
Meanwhile, R receives about K.1 � �/=.1 � ��1/ packets. Node R can use another fountain code
to transmit the packets it has received to Dst using t 0

2 � K=.1 � ��1/ time slots. Therefore, the
achievable rate of this scheme is K=.t 0

1 C t 0
2/ � .1 � ��1/=2, which is also less than the capacity.

The above scheme is not optimal due to the second phase. In principle, node R only needs
to transmit the packets that are not received by Dst. There are about K.1 � �/�1=.1 � ��1/ such
packets. Since we do not assume any feedback from Dst to R, the latter does not know which
packets have been received by the former.
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1.4 NETWORKCODING
Network coding [2] allows an intermediate node to generate and transmit new packets using the
packets it has received. In general, achieving the capacity of a network requires the use of network
coding. In particular, when the network is error-free, linear network coding was proved to be
sufficient for multicast communications [32, 35] and can be realized distributedly by random
linear network coding (RLNC) [12, 21, 26, 64]. Readers are referred to [104] for a brief history
of network coding and to [15, 22, 52, 103] for more detailed and general discussions on network
coding. Here, we focus on the network coding schemes for networks with packet loss.

1.4.1 RANDOMLINEARNETWORKCODING
The following network coding method has been proved to achieve the multicast capacity for
networks with packet loss in a wide range of scenarios [13, 45, 88], which is referred to as the
baseline random linear network coding scheme (baseline RLNC scheme).

Scheme 1.6 Baseline RLNC The source node transmits random linear combinations of the
input packets and an intermediate node transmits random linear combinations of the packets
it has received. Note that no erasure codes are required for each link although packet loss is
allowed. Network coding itself plays the role of end-to-end erasure coding. A destination node
can decode the input packets when it receives enough coded packets with linearly independent
coding vectors.

Let us use the three-node network in Figure 1.1 as an example to illustrate how this
scheme works. Suppose the source node Src has K packets for transmission, denoted by
b1; b2; : : : ; bK . We equate a set of packets to a matrix formed by juxtaposing the packets in
this set. For example, we denote the set of input packets by the matrix

B D
�
b1; b2; � � � ; bK

�
:

Let K 0 D .1 C ı/K, where ı > 0. The source node generates independently K 0 random linear
combinations of these K packets, each of the form

PK
iD1 ˛ibi , where ˛i is selected uniformly at

random from the base field. The generated packets can be collectively represented by

X D BA;

where A is a K � K 0 matrix with i.i.d. uniformly distributed entries (which is also called a totally
random matrix).

Suppose each link of the network is used K 0 times. The K 0 linear combinations in X

are transmitted by node Src in K 0 time slots. The packet loss on link .Src; R/ or .R; Dst/ can
be modeled by a K 0 � K 0 random diagonal matrix E with independent components, where a
diagonal component is 0 with probability � and is 1 with probability 1 � �. The network coding



1.4. NETWORKCODING 13
at the intermediate node can be modeled by a K 0 � K 0 upper triangular matrix ˆ, where all
the upper triangular entries are i.i.d. and uniformly distributed over the base field. With these
matrices, the received packets at the sink node can be represented by

Y D XE1ˆE2 D BAE1ˆE2;

where E1 and E2 are independent random matrices with the same distribution as E. We usually
call H D E1ˆE2 the transfer matrix.

Now let us see how to decode B at the destination node. First, the destination node knows
the instance of AH by means of the transmission of a set of coefficient vectors by the source node
[21]. Suppose for each input packet bi , K out of the T symbols (T > K) of the packet are used
to transmit a coefficient vector, where the coefficient vectors of all the input packets form the
identity matrix of dimension K. Therefore, we have

Y D BAH D

�
I

B0

�
AH D

�
AH

B0AH

�
; (1.3)

and the instance of AH can be recovered as part of the received packets at the destination node.
Now, if the instance of AH is also full rank, the matrix B0 can be recovered by solving a system
of linear equations. It can be shown that for any ı > �=.1 � �/, the matrix AH is full rank with
a probability converging to 1 as the size of the base field tends to infinity (or for the binary field
as K tends to infinity).

The above analysis can be generalized for a line network with any fixed number of hops.
For a line network with l hops, the transmission delay is .K C l � 1/=.1 � �/ time slots, achiev-
ing the lower bound given in Section 1.2.1. The baseline RLNC scheme achieves the optimal
transmission delay of link-by-link retransmission [70], and hence the expected transmission
delay of the baseline RLNC scheme is K=.1 � �/ C O.l

p
�K=.1 � �//.

The baseline RLNC scheme also achieves the capacity of the wireless broadcast network
in Figure 1.3 and the WER network in Figure 1.2 without feedback for reliable communication,
though we may need, for example, the feedback for the notification of successful decoding from
the destination node or the feedback for scheduling the node transmissions. For the WER, we
need to know the packet loss rates on all the links in advance so that the transmission time of
node Src and R can be optimally scheduled.

In particular, for the WER network in Figure 1.2, node Src transmits about t 0
1 D K=.1 �

��1/ random linear combinations of the input packets, so that the total number of packets re-
ceived by R or Dst is about K, which is sufficient to recover all the input packets. Meanwhile,
the number of packets received by R only is about K.1 � �/�1=.1 � ��1/. It is not necessary for
R to transmit exactly these packets to Dst. Instead, node R only needs to transmits about

t 00
2 D

K.1 � �/�1=.1 � ��1/

1 � �
D

K

1 � ��1

�1
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random linear combinations of these packets, so that node Dst receives a total of at least t 0

1.1 �

�1/ C t 00
2 .1 � �/ D K independent linear combinations of the input packets.
The random linear combinations generated by the source node and the intermediate nodes

play two roles. The first is a link-level erasure coding, which resolves the packet loss on net-
work links. The second is network coding, which achieves the multicast capacity of error-free
networks. Note that the intermediate network nodes do not perform any decoding operations,
which is the same as in Scheme 1.2. The destination node decodes the encoding at the source
node and the intermediate network node jointly, and decodes the network coding and the link-
level erasure coding jointly.

Complexity Issues of Baseline RLNC
The baseline RLNC scheme has been implemented for small numbers of input packets, e.g.,
32 (see [10]), but the scheme is difficult to be implemented efficiently when the number of
input packets is relatively large (e.g., several hundreds) due to the computational and storage
complexities and the coefficient vector overhead to be discussed below.Note that several hundred
packets does not form a very big file. For example, a 500 KByte file may consist of 500 packets
in IEEE 802.11 and 5,000 packets in IEEE 802.15.4.

Consider transmitting K packets where each packet consists of T symbols in a finite field.
The encoding of a packet at the source node takes O.TK/ finite field operations. A finite field
operation refers to the addition or multiplication of two field elements. At an intermediate node,
all the packets it has received need to be buffered for network coding, so in the worst case, the
storage cost is K packets and the computation cost of encoding a packet at an intermediate
node is O.TK/ finite field operations. Decoding using Gaussian elimination costs on average
O.K2 C TK/ finite field operations per packet. Although these complexities are polynomials in
K, the baseline RLNC scheme is still difficult to implement for K large than, say, 300.

Coefficient vectors are used in the base line RLNC scheme to recover the instance of
AH. For transmitting K input packets, the scheme requires that each packet includes a coeffi-
cient vector of K symbols. Hence, the coefficient vector overhead is K symbols per packet of
T symbols. Network communication systems usually have a maximum value for T , e.g., sev-
eral thousands of symbols. Therefore, for large values of K, the coefficient vector overhead is
significant.

Many research works have been conducted with an aim to devise low-complexity, practical
RLNC schemes. We first review some of these works.

1.4.2 FOUNTAINCODESWITHNETWORKCODING
Fountain codes have been considered to be used with networks employing linear network coding.
Specifically, in the baseline RLNC scheme, we canmodify the source node to use a fountain code
for encoding the input packets [58]. Using fountain codes reduces the encoding complexity of
the baseline RLNC, but it is not straightforward to see how to reduce the decoding complexity,
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the intermediate node storage/computation complexity and the coefficient vector overhead of
the baseline RLNC.

The low complexity decoding scheme of fountain codes requires that the degrees of the
received packets follow certain distributions (e.g., the robust soliton distribution). However,
network coding at the intermediate nodes changes the degrees of the recoded packets, so that it
is difficult to guarantee that the degrees of the received packets follow a specific distribution.

Heuristic algorithms have been proposed for special cases [5, 6, 11, 18, 38, 81, 83], but
these approaches cannot achieve a performance similar to that of fountain codes over an erasure
channel (i.e., larger coding overhead is incurred), and are difficult to be extended to general net-
work settings. Moreover, they require the intermediate nodes to have a buffer size that increases
linearly with the number of packets for transmission.

A different degree distribution problem of fountain codes has been studied for a network
with two or more source nodes, one relay node and one destination node [37, 60, 66], called
the distributed LT code problem. In these works, the relay node combines the encoded packets
from multiple source nodes so that the destination node observes a desirable degree distribution.
The focus of these works is how to reduce the coding overhead for networks with more than one
source node. When reducing to one source node, the schemes of this works becomes the one that
only forward the packets at the relay node. But as we have discussed, even the coding overhead
is zero, using forwarding at the relay node is far from rate optimal.

See also a review of this line of works in [1] for packet loss in wireless sensor networks.
These works do provide a possible direction for solving the complexity issues of the baseline
RLNC scheme. However, fountain codes were not designed with network coding taken into
consideration, and so these works fail to give a general approach that can reduce both the coef-
ficient vector overhead and the decoding complexity.

1.4.3 CHUNKS
Another approach is to use disjoint chunks, each of which is a subset of the input packets.4
A large file can be separated into a number of small chunks, and each chunk is transmitted
independently, i.e., network coding is applied only for packets belonging to the same chunk
[12]. Using this approach, the matrix AH in (1.3) becomes a block diagonal matrix. The use
of small chunks can effectively reduce the encoding/decoding computational complexity and
coefficient vector overhead. This idea is used in many earlier implementations of random linear
network coding [10, 17, 30, 85] for demonstrating the advantage of network coding. However,
the use of disjoint chunks introduces new issues.

Since all the chunks are disjoint and individually decoded, it is necessary to guarantee that
they are all decoded correctly at the destination node, which is not a simple task. Suppose we
use chunks of size M and we have totally n chunks. Since the transmission of all the chunks are
independent, the problem is equivalent to transmitting n files, each of which has M packets,
4A chunk is also called a segment, class, group, or batch in literature.
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using the baseline RLNC. The optimality of the baseline RLNC requires M to be large, while
in the current approach we are particularly interested in the use of small M , e.g., 16 and 32.

There are different scheduling approaches for transmitting the n chunks from the source
node to the destination nodes. Suppose the source node only transmits random linear combi-
nations of the packets of a chunk. The first approach is called sequential scheduling [12], where
the chunks are transmitted sequentially. The transmission of a chunk is stopped only when the
source node receives the feedback from the destination node indicating that the current chunk
has been decoded correctly. This sequential scheduling is exactly like TCP, except that the trans-
mission unit is now a chunk instead of a packet.

For line networks, we can use link-by-link feedback instead of the end-to-end feedback.
A network node keeps transmitting a chunk until it receives the feedback message indicating
that the chunk is decodable at the next node (this can be verified by checking the number of
linearly independent coefficient vectors). This link-by-link sequential scheduling of chunks is
similar to the link-by-link retransmission scheme, except that the transmission unit is now a
chunk instead of a packet. Similar to the analysis of link-by-link retransmission, we see that the
transmission delay is K=.1 � �/ C O.l

p
�K=.1 � �// time slots, and the storage requirement at

a relay node is O.
p

�K/.
The issues of using feedbacks in sequential scheduling are similar to those of link-by-link

retransmission that have been discussed in Section 1.2. For example, sequential scheduling of
chunks is not scalable for multicast.

In round-robin scheduling [12], the chunks are served in a round-robin fashion, one
chunk in each time slot. When a chuck is served, it is used for generating the coded packet
to be transmitted. This process continues until all the chunks are decoded. In random schedul-
ing [51], at each transmission opportunity, a chunk is randomly picked and used for generating
the coded packet to be transmitted.

Both round-robin scheduling and random scheduling have similar issues. First,
random/round-robin scheduling of chunks requires the intermediate nodes to cache all the
chunks. So they are not suitable for line networks with limited storage at the intermediate nodes.
Second, random/round-robin scheduling of chunks becomes less efficient when a fraction of
chunks have been decoded. For example, after 50% of the chunks have been decoded at the
destination node, at least half of the transmissions are redundant. Although it has been shown
that random scheduling can be asymptotically capacity achieving when the chunk size is at or
higher than the logarithmic order of the number of input packets [51], for a fixed chunked size,
the achievable rate tends to zero as the number of input packets tends to infinity [79].

To resolve the issue of random scheduling of chunks, a precoding technique similar to that
of Raptor codes has been considered [51]. Precoding allows the input packets to be recovered
when only a fraction of all the chunks have been successfully decoded. This can be studied
under the general framework of chunked codes. The first class of chunked codes proposed uses
overlapping chunks [19, 36, 73]. An already decoded chunk can help the decoding of the other
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chunks that overlap with it. Chunked codes using LDPC were proposed in [47, 48]. In [19,
36, 47, 48, 73], the design of chunked codes focuses on improving the performance of random
chunk scheduling.

1.4.4 BATSCODES
BATS codes were proposed in parallel with overlapping chunked codes [95, 97]. A BATS code
consists of an outer code and an inner code. As a matrix generalization of a fountain code,
the outer code generates a potentially unlimited number of batches, each of which consists of
M coded symbols. The inner code comprises (random) linear network coding [21, 32, 35] at
the intermediate network nodes, which is applied on the symbols belonging to the same batch.
When M D 1, the outer code becomes an LT code (or Raptor code if precode is applied), and
network coding of the batches becomes forwarding.

The outer-code-inner-code structure provides a new framework to design and analyze
the performance of efficient network coding schemes, which is also adopted in the design of
chunked codes in [77, 78, 79, 94]. In this monograph, we study the design of both the outer
code and the inner code of a BATS code.

The outer code of a BATS code preserves the salient features of fountain codes, in partic-
ular, their rateless property and low encoding/decoding complexity. Here, the rateless property
means that the number of batches that can be generated by a BATS code is unlimited theo-
retically, and any subsets of the same number of batches generated at the source node have the
same nature. This is the major difference between BATS codes and chunked codes—only a fixed
number of chunks can be generated for all the chunked codes discussed above.5

This rateless property makes BATS codes more flexible than chunked codes in practical
applications. For example, consider the transmission in a line network, where the source node
does not know the packet loss rate on all network links. The coding rate of a chunked codes
cannot be optimally determined so that the source node has to apply round-robin or random
scheduling for chunk transmissions, which has been proven to be far from optimal for line net-
works. When using BATS code, since all the batches are statistically identical, different batches
can be transmitted sequentially until the file can be decoded at the destination node.

As another example, consider the transmission from multiple source nodes, each of which
has the same file, to the same destination node. When using chunked codes, some collaboration
among the source nodes is required to avoid the transmission of the same chunks, which may
reduce the benefit of using multiple source nodes. When using BATS codes, however, the col-
laboration among the source nodes is not required since each the batches generated by different
source nodes are different with high probability.

5Chunked codes have been said to have a different “rateless” property in the sense that a network node can transmit an
unlimited number of linear combinations of a chunk. We would say that this is the rateless property of an individual chunk
(instead of the chunked code) since only the individual chunk can be recoveredwith high probability when a sufficient number
of linear combinations of this chunk are received. In fact, we should avoid transmitting too many linear combinations of the
same chunk.
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To effectively use BATS codes, as well as other chunked codes, we also need a proper

network coding scheme for transmitting the batches, which is also called the inner code of a
BATS code. BATS and other (fixed rate) chunked codes can share the same inner codes with
little modifications. Compared with the existing frameworks of chunked codes, like EC codes
[78], Gamma codes [47], and L-chunked codes [94], BATS codes generally achieve higher rates
and have the extra feature that an unlimited number of batches can be generated. Although we
focus on BATS codes, the inner code discussed in this monograph applies to general chunked
codes as well.

1.4.5 OTHERAPPROACHES
In addition to the above approaches, there are techniques focusing on certain specific issues or
scenarios. For example, if the intermediate nodes can cache only a small number of packets
in the baseline RLNC scheme, a significant percentage of the min-cut can still be achieved in
a two-hop line network [44], but the coefficient vector overhead and the encoding/decoding
complexity remain to be the same as those of the baseline RLNC scheme. An error correction
code based approach is proposed to reduce the coefficient vector overhead [25]. This approach
puts a limit on the number of packets that can be combined together, but does not take the
decoding complexity into consideration. Link-by-link feedback can be used to reduce the storage
at the intermediate nodes [14, 31, 76]. A binary permutation matrix based approach to reduce
the complexity of the finite field operations in linear network coding has been proposed in [27].

Lifted rank-metric codes [72] are designed for also correcting additive errors in the base-
line RLNC scheme. Hence, as network coding schemes for networks with packet loss, they have
the same drawbacks as baseline RLNC.

A general approach for resolving the coefficient vector overhead is to use non-coherent
network coding schemes, where coefficient vectors are not used explicitly, which was first pro-
posed in a subspace code framework without the chunked structure [33]. The achievable rate
of using non-coherent chunked transmission has been studied in [71, 100]. A subspace-matrix
superposition framework was proposed to design non-coherent chunked network codes [93].
But more research works are required for efficient non-coherent network coding schemes for
networks with packet loss.

Information theoretic studies of the throughput and latency of line networks when the
intermediate nodes have finite buffer can be found in [56, 82].

1.5 PERFORMANCECOMPARISON

We end this chapter with a comparison of the performance of different coding schemes for a line
network of length l . Suppose the network links have packet loss rate �, the file has K packets of
length T , and the batch/chunk size is M . We consider the following performance measures:
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• transmission throughput measures the capability of a scheme for continuous data trans-

mission;

• transmission delay is the time from the beginning of transmission to the decoding of the
whole file at the destination node;

• requirements of feedback and information on link loss rate for reliable communication or
scheduling;

• encoding and decoding complexity at the source node and the destination node, respec-
tively;

• storage and recoding complexity at the relay nodes;

• coding coefficient overhead; and

• rateless property.

In Table 1.1, the performance of BATS codes is compared with five other schemes:
link-by-link retransmission, link-by-link fountain codes, systematic re-encoding fountain codes,
baseline RLNC and disjoint chunks. We see that BATS codes demonstrate the best overall per-
formance among all these schemes when the batch size is relatively small compared with the
packet length and the number of packets. Compared with link-by-link retransmission and dis-
joint chunks, BATS codes do not require ideal link-by-link feedback and have smaller relay node
storage requirement. Compared with RLNC, BATS codes have higher achievable rates, smaller
relay node storage and computation cost, and smaller destination node decoding complexity
when K is larger than M (which is almost always the case).

The encoding and decoding computation costs are similar to that of fountain codes, so
that the outer code of a BATS code can be implemented efficiently by software and/or hard-
ware. In addition to low encoding/decoding complexity, the inner code of a BATS code can be
realized with constant computation and storage costs at the intermediate nodes. This desirable
property makes BATS code a suitable candidate for the making of universal network coding
based network devices that can potentially replace routers.
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C H A P T E R 2

BATSCodes Basics
In this chapter, we introduce the basic encoding and decoding approaches of BATS codes. The
rank of a matrix A is denoted by rk.A/. In the following discussion, we equate a set of packets to
a matrix formed by juxtaposing the packets in this set. For example, we denote the set of input
packets by the matrix

B D
�
b1 b2 � � � bK

�
;

where bi is the i-th input packet. On the other hand, we also regard B as a set of packets, and
so, with an abuse of notation, we also write bi 2 B, B0 � B, etc. When we write B0 � B, we also
regard B0 as a submatrix of B.

2.1 ENCODINGOFBATCHES
2.1.1 OUTERCODE:GENERATIONOFBATCHES
A BATS code consists of an outer code and an inner code. Let us first describe the outer code of
a BATS code, which generates coded packets in batches. A batch is a set of M coded packets
generated from a subset of the K input packets. For i D 1; 2; : : :, the i-th batch Xi is generated
from a subset Bi � B of the input packets by the operation

Xi D BiGi ;

where Gi , a matrix with M columns, is called the generator matrix of the i-th batch. We call the
packets in Bi the contributors of the i-th batch, and denote by Ai the index set of the packets
in Bi . For example, if Bi D

�
b1 b5 b7

�
, then Ai D f1; 5; 7g.

The value dgi , jAi j is called the degree of the i-th batch, which are independent random
variables following a distribution ‰ D .‰1; : : : ; ‰K/, so that

Prfdgi D di ; i D 1; : : : ; ng D

nY
iD1

‰di
; n D 1; 2; : : : :

We call ‰ the degree distribution, which is one of the crucial parameters of a BATS code.
We focus on random encoding in this monograph, i.e., the generator matrix Gi is a dgi �

M totally randommatrix, in which all the entries are i.i.d. and uniformly distributed over the base
field. Random generator matrices not only facilitate analysis but are also readily implementable.
For example, Gi , i D 1; 2; � � � can be generated by a pseudorandom number generator and can
be recovered at the destination nodes by the same pseudorandom number generator.
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There are no limits on the number of batches that can be generated. This rateless property

can benefit the network transmission from many aspects.

• When the source node does not know the complete network status, e.g., the packet loss
rate on the network links, the source node can just transmit different batches sequentially
until the decoding of the file.

• Consider the transmission from multiple source nodes, each of which has the same file,
to the same destination node. These source nodes can generate the batches independently
without collaboration, and the destination node can decode the batches generated at dif-
ferent source node jointly.

• Consider the transmission from a source node tomultiple destination nodes, each of which
has received some batches. The source node generates new batches for transmission with-
out knowning the batches in the destination nodes.

The approach to handling a large number of batches will be discussed in the next chapter.
The batch encoding process can be described by a Tanner graph. The Tanner graph has K

variable nodes, where variable node i corresponds to the i-th input packet bi , and a number of
check nodes, where check node j corresponds to the j -th batch Xj . Check node j is connected
to variable node i if bi is a contributor of Xj . Associated with each check node j is the generator
matrix Gj . Figure 2.1 illustrates an example of a Tanner graph for encoding batches. Henceforth,
we equate a variable node with an input packet, and a check node with a batch.

G1 G2 G3 G4 G5

H1 H2 H3 H4 H5

Figure 2.1: A Tanner graph for the inner and the outer code of a BATS code. The nodes on the
first row are the variable nodes representing the input packets. The nodes on the second row are
the check nodes representing the batches generated by the outer code. The nodes on the third
row are the check nodes representing the batches processed by the inner code.

2.1.2 INNERCODE: TRANSMISSIONOFBATCHES
Now we turn to the inner code of a BATS code, which is the linear network coding scheme at the
network nodes and also called recoding. The batches generated by the outer code are transmitted
in a network employing linear network coding, possibly with multiple destination nodes. We
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assume that the end-to-end transformation of each batch from the source node to a destination
node is a linear operation. Fix a destination node. Let Hi be the transfer matrix of the i-th batch
and Yi be the output (received) packets of the i-th batch. We have

Yi D XiHi D BiGiHi : (2.1)

The number of rows of Hi is M . The number of columns of Hi corresponds to the number of
packets received for the i-th batch, which may vary for different batches and is finite. If no
packets are received for a batch, Yi (Hi ) is the empty matrix of 0 columns.

We assume that Hi , i D 1; 2; : : : are independent of the encoding process. The instance
of Hi is known for decoding through the coefficient vector in the packet header [21] (see Sec-
tion 1.4.1). We call rk.Hi / the rank of the i-th batch.

To guarantee the end-to-end network operation on the batches as stipulated in (2.1), we
may require that a network node can only apply network coding on the packets belonging to the
same batch (otherwise Yi may depend on Xi for j ¤ i , not just on Xi ). Packet loss and dynamic
network topology are allowed during the network transmission.The benefits of applying network
coding within batches includes the following.

• The network coding complexity at a network node is O.MT / finite field operations per
packet, which does not depend on K.

• The coefficient vector overhead is bounded by M base field symbols. When the packet
length T is sufficiently larger than M , this overhead is negligible.

• It is not necessary to keep all the batches at an intermediate network node for the purpose
of network coding. As we will show in the following chapters, it is sufficient to cache one
or several batches at an intermediate node.

Note that the requirement of network coding within a batch is not a necessity. For ex-
ample, it is possible that network coding between packets of different batches is applied locally
so that the coded packets of different batches at a network node can be decoded directly at the
nodes in the next hop. Readers can find such an example of the application of BATS codes
in Huang et al. [24] and Zhang et al. [107]. We will also discuss the use of network coding
acrossing batches in Chapter 9.

The transfer matrices of batches are determined jointly by the inner code and the net-
work topology between the source node and the destination node. Under the principle that
only packets of the same batch can be recoded, we have a lot of freedom in designing the in-
ner code, including how to manage the buffer contents, how to schedule the transmission of
batches/packets, and how to use the feedback messages. We will use a typical network topology
to illustrate how to design the inner code so that the benefit of BATS codes is maximized (see
Chapter 3).

The empirical rank distribution of the transfer matrices is an important parameter for the
design of BATS codes, which is also simply called the rank distribution. Note that, in general,
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we do not assume that the transfer matrices of batches are i.i.d. As we will make it clear later,
the rank distribution determines the maximum achievable rate of the outer code and provides
sufficient information for a nearly optimal outer codes design. It is also not necessary for the
source node to know the exact rank distribution. When we have partial or no knowledge about
the rank distribution, certain achievable rates can also be guaranteed. In other words, we do
not need to have the complete knowledge about the distribution of the transfer matrices for
designing BATS codes; the rank distribution alone is sufficient.

2.2 GAUSSIANELIMINATIONDECODING
Consider the decoding of the BATS code described above with n � 1 received batches
Y1; Y2; : : : ; Yn. Assume that the sink node knows also GiHi and Ai for i D 1; : : : ; n. A neces-
sary and sufficient condition that the K input packets can be decoded is that the linear system

Yi D BiGiHi ; i D 1; : : : ; n

has a unique solution, which is the case only if K �
Pn

iD1 rk.Hi /. SupposePn
iD1 rk.Hi /

n

P
! C as n ! 1: (2.2)

Then C is an asymptotic upper bound on the achievable rate of BATS codes in packets per batch.
This upper bound can be achieved using the degree distribution that ‰K D 1, i.e., all the

input packets are involved in generating every batch, so that Bi D B for all i . A BATS code
with ‰K D 1 is also called a random linear code, for which

�
Y1 � � � Yn

�
D B

�
G1 � � � Gn

�
26664

H1

H2

: : :

Hn

37775 :

Write QG D
�
G1 � � � Gn

�
and QH D diag.H1; H2; : : : ; Hn/. By construction, each row of QG QH is

a vector chosen uniformly at random from the subspace spanned by the rows of QH. If the K

rows of QG QH are linearly independent, the system of linear equations has a unique solution. Let
R D

Pn
iD1 rk.Hi /. We have

Prfrk. QG QH/ D KjR D rg D �r
K ;

where

�r
K D �r

K.q/ ,
�

.1 � q�r/.1 � q�rC1/ � � � .1 � q�rCK�1/ 0 < K � r;

1 K D 0:
(2.3)
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Therefore for any � > 0 and K D n.C � 2�/,

Prfrk. QG QH/ D Kg D
X

r�n.C ��/

Prfrk. QG QH/ D KjR D rg PrfR D rg

D
X

r�n.C ��/

�r
K PrfR D rg

�
X

r�n.C ��/

�
bn.C ��/c
K PrfR D rg

D �
bn.C ��/c
K PrfR � n.C � �/g:

Since both �
bn.C ��/c
K and PrfR � n.C � �/g converge to 1 as n tends to infinity, Prfrk. QG QH/ D

Kg ! 1 as n tends to infinity. Therefore, C is achievable.
In the above analysis, we see that

• the achievability does not depend on the field size. Even binary field works; and

• the random linear code universally achieves C regardless of the distribution Hi , i D

1; : : : ; n.
However, the random linear code has an encoding complexity of O.KT / finite field operations
per packet, and solving the above linear system by Gaussian elimination (GE) has a complexity
of O.K3 C TK2/ finite field operations. Though the random linear code achieves C , in practice,
we need to design BATS codes with lower encoding and decoding complexity.

One approach to achieve low encoding/decoding complexity is to use sparse encoding and
belief propagation (BP) decoding. Another apporach, to be discussed in Chapter 8, is inactivation
decoding that combines BP decoding with Gaussian elimination.

2.3 BELIEF PROPAGATIONDECODING
We describe two BP decoders that can be used for different purposes.

2.3.1 BP.n/ DECODER
The time index starts at 0 and increases by 1 after each decoding step. The decoding algorithm
updates Ai ; Gi , and Yi in each step. For each batch i and time t , let A

.t/
i ; G.t/

i , and Y.t/
i be the

values of Ai ; Gi , and Yi at time t , respectively. When t D 0, we have A
.0/
i D Ai ; G.0/

i D G and
Y.0/

i D Yi . Iterative formulae will be given for these variables at t > 0. We call jA
.t/
i j the degree

of batch i at time t .
We say a batch i is decodable at time t if rk.G.t/

i Hi / D jA
.t/
i j (i.e., its degree is equal to the

rank of G.t/
i Hi ), and an input packet is decodable at time t if it contributes to a decodable batch

at time t . Denote by B.t/
i a matrix formed by juxtaposing the input packets with indices in A

.t/
i .

The associated linear system of batch i at time t is

Y.t/
i D B.t/

i � G.t/
i � Hi :
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Batch i at time t is decodable means that the above linear system, with B.t/
i as the variable, has

a unique solution.
The decoding algorithm operates as follows. For each time t , a decodable input packet is

selected (if there is more than one such packets), substituted into the undecodable batches that
it contributes to, and marked as decoded.1 Suppose that the j -th input packet bj is decoded at
time t . We then substitute the decoded input packet into the batches it contributes to: For each
batch i ,

1. if j 2 A
.t/
i , then A

.tC1/
i D A

.t/
i n fj g, G.tC1/

i is formed by removing the row g of G.t/
i

corresponding to the j -th input packet bj , and Y.tC1/
i D Y.t/

i � bj gHi ; and

2. if j … A
.t/
i , then A

.tC1/
i D A

.t/
i , G.tC1/

i D G.t/
i and Y.tC1/

i D Y.t/
i .

The decoding stops when there are no decodable input packets.
The BATS code decoding algorithm described above uses a given number n of batches,

and is denoted by BP.n/. For BP.n/, we are interested in the time when the decoding stops,
which is equal to the number of input packets that are decoded. For example, if BP.n/ stops
at time zero, then no input packets are decoded; if BP.n/ stops at time K, then all the input
packets are decoded. We will characterize the distribution of the stopping time of BP.n/ for
finite values of n (see Chapter 7).

2.3.2 RATELESS BPDECODER
Now let us see how to benefit from the unlimited number of batches. Suppose the encoder
generates n batches. When BP.n/ stops without all the input packets decoded, the encoder can
generate more batches to resume the BP decoding procedure. We define the following rateless
BP decoder BP� that consumes the batches one by one. BP� starts by fetching the first batch.
When n batches are fetched (n D 1 to start with), BP.n/ is applied. If BP.n/ stops with all
the input packets decoded, BP� stops; otherwise, one more batch is fetched and BP.n C 1/ is
applied. Since the number of batches is unlimited, BP� will eventually stop with all the input
packets decoded.

For BP�, we are interested in the number of batches consumed when the decoding stops.
We will characterize the distribution of the number of batches consumed as well as the expected
number of batches consumed by BP� in Chapter 7.

2.3.3 BPDECODINGCOMPLEXITY
In the following, computational complexity is expressed in the finite field operations. Suppose
T and M are given, and K and n are the variables that tend to infinity in the big O notation.

1Note that in each step, the choice of the decodable input packet to substitute does not affect the time when the decoding
stops (see [97, Appendix B]).
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To generate a batch of degree d , we combine d packets together M times, each time with

a different linear combination. Thus, generating a batch with degree d costs O.TMd/ finite field
operations, and so the encoding complexity of n batches is O.TM

Pn
iD1 di /, which converges

to O.TMn N‰/ finite field operations when n is large, where N‰ D
P

d d‰d is the average degree.
Let ki D rk.Hi / and let k0

i be the rank of GiHi when check node i becomes decodable.
It is clear that k0

i � ki � M . By the definition of the decodability of a check node, k0
i is also

the degree of check node i when it becomes decodable. Since the degree of a check node can
only decrease at each step of the decoding process, we have k0

i � di . The decoding processing
involves two parts: the first part is the decoding of the decodable check nodes, which costs
O.
P

i k03
i C T

P
i k02

i / finite field operations; the second part is the updating of the decod-
ing graph, which costs O.T

P
i .di � k0

i /M/ finite field operations. So the total complexity is
O.
P

i k03
i C T

P
i k02

i C T
P

i .di � k0
i /M/, which can be simplified to O.nM 3 C TM

P
i di /.

When n is large, the complexity converges to O.M 3n C TM n N‰/ finite field operations. Usually,
T and N‰ is considerably larger than M , so that the second term is dominant.

2.3.4 SOLVABILITYOFABATCH
Recall that Fq is the finite field with q elements. For fixed integers r; m > 0, we say an r � m

matrix over Fq is totally random if all the entries of the matrix are independently and uniformly
chosen at random from Fq . We also say that the entries of the matrix are uniform i.i.d. over Fq .

We first review some counting results about totally random matrices over Fq , which have
been discussed in previous works (see for example [4, 16]). Recall the definition

�m
r D

�
.1 � q�m/.1 � q�mC1/ � � � .1 � q�mCr�1/ 0 < r � m;

1 r D 0:

For 0 < r � m, it can readily be checked that �m
r is the probability of the r � m totally random

matrix is full rank.
For integers 0 � k � r; m, define

�
m;r
k

,
�m

k
�r

k

�k
k

q.m�k/.r�k/
: (2.4)

Then �
m;r
k

is the probability that the r � m totally random matrix has rank k. In particular, when
k D r , �

m;r
k

D �m
r . For m D 0; 1; : : : ; M , let G.s/ be the m � M totally random matrix and H be

a random matrix with M rows. Then for any r � M ,

Prfrk.G.m/H/ D kj rk.H/ D rg D �
m;r
k

: (2.5)

Let us check the probability that a batch is decodable when its degree has a specific value.
According to the algorithm BP.n/, if a batch is decodable at time t , it is decodable at all time
t 0 > t until the associated linear system has no variable left. We say a batch is decodable for the
first time at time t if it is decodable at time t , but is not decodable at time t � 1.
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For s D 0; 1; : : : ; M , let G.s/ be an s � M totally random matrix over the base field Fq .
Suppose all the batch transfer matrices Hi have the same distribution as H. Define

„s , Pr
�
rk
��

G.1/

G.s/

�
H
�

D rk.G.s/H/ D s

�
; (2.6)

„
0
s , Prfrk.G.s/H/ D sg; (2.7)

where G.1/ and G.s/ are statistically independent. Note that „s is the probability that a batch
with transfer matrix H is decodable for the first time when its degree is s. Once a batch becomes
decodable, it remains to be decodable until all its contributors are decoded. Note that

„
0
s D

X
k�s

„k (2.8)

for 0 � s � M and „s D 0 for s > M . As an exercise, it can be shown that

„s D

MX
kDs

�k
s

qk�s
hk (2.9)

„
0
s D

MX
kDs

�k
s hk; (2.10)

where hk , Pr frk.H/ D kg is the rank distribution of H. By (2.8) and (2.10), we have

X
k�s

„k D

MX
kDs

�k
s hk : (2.11)

Note that when the field size is large enough, e.g., q D 28, the difference between hk

and „k becomes negligible. In other words, if we use GF.28/ as the base field for BATS code
encoding, a batch becomes decodable with high probability when its degree is reduced to the
rank of the batch transfer matrix.

2.3.5 LAYEREDDECODINGGRAPH
In BP decoding, it is possible that more than one input packets are decodable simultaneously.
Here we show that the order of substituting the decodable input packets back into the batches
they contribute to does not affect the number of input packets decoded when BP.n/ stops.

Lemma 2.1 For a deterministic instance of BATS code of n batches, the order of the decodable input
packets for substitution does not affect the time that BP.n/ stops.
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Proof. Consider a deterministic instance of BATS code represented by a graph T . Let T 0 D T .
Label by L0

c all the decodable check nodes in T 0 and label by L0
v all the variable nodes in T 0

connected to the check nodes with label L0
c . We repeat the above procedure as follows. For

i D 1; 2; : : :, let T i be the subgraph of T obtained by removing all the nodes with labels L
j
c

and L
j
v for j < i , as well as the adjacent edges. (The generator matrices of the check nodes are

also updated as the BP decoding.) Label by Li
c all the decodable check nodes in T i and label

by Li
v all the variable nodes in T i connected to the check nodes with label Li

c . This procedure
stops when T i has no more decodable check nodes. Let i0 be the index where the procedure
stops, i.e., T i0 has no decodable check nodes. The above labeling procedure is deterministic and
generates unique labels for each variable nodes and check nodes.

With these labels, we generate a layered subgraph T 0 of T . In T 0, layer j , j D

0; 2; 4; : : : ; 2i0 � 2 contains all the check nodes with label L
j=2
c , and layer j C 1, j D

0; 2; 4; : : : ; 2i0 � 2 contains all the variable nodes with label L
j=2
v . Only the edges connecting

two nodes belonging to two consecutive layers are preserved in T 0. By the assigning rule of the
labels, it is clear that a variable node on layer 2i C 1 must connect to one check node on layer
2i , i D 0; 1; : : : ; i0 � 1, because otherwise the variable node is not decodable. Further, a check
node on layer 2i must connect to some variable nodes on layer 2i � 1, i D 1; : : : ; i0 � 1, because
otherwise the check node should be on layer 2i � 2.

By the definition of decodability, any BP decoding strategy must process the vari-
able/check nodes in T 0 following an order such that a variable/check node is processed after all
its lower layer descendant variable/check nodes have been processed, and stops with the residual
graph T i0 . �

2.4 PRECODING
After the BP decoding has stopped with a fraction of the input packets decoded, we can try
to decode the remaining input packets using Gaussian elimination. Can we guarantee that the
Gaussian elimination succeeds with a small coding overhead? The answer is actually negative if
we want to have a constant decoding complexity with respect to K (in finite field operations per
packet).

Consider that we want to recover all the K input packets using n batches with probability
at least 1 � 1=Kc for some positive constant c. Similar to the analysis of LT codes (cf. [68,
Proposition 1]), no matter what decoding algorithm is applied, the expected degree of a batch
must be lower bounded by c0 K

n
log K for some positive constant c0. When K=n converges to a

constant positive value, the expected degree of a batch is lower bounded by c00 log K for some
positive constant c00.

One way to resolve the above issue is to use the precoding technique which has been used
in Raptor codes. Suppose we have K 0 input packets to transmit. Before applying the batch
encoding process in Section 2.1, the input packets are first encoded using a traditional erasure
code (called a precode), where the generated K packets are called the precoded input packets. The
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batch encoding process is applied to the K precoded input packets generated by the precode.
At a destination node, the BP decoding of BATS code is first used to recover at least K 0 out of
the K precoded input packets. The precode decoder is further applied to recover the K 0 input
packets.

Although the two-step decoding is easier for performance analysis, in practice, its better
to jointly decode the precode and the BATS code. For example, when an LDPC code can be
used as the precode, the BP decoding of LDPC codes and that of BATS codes can be combined
into one BP decoding process.

Precoding is particularly useful when used with inactivation decoding, which will be dis-
cussed in Chapter 7. Due to similar requirements, the precode of BATS codes can be designed
similar to that of Raptor codes. Readers can find the detailed discussion of the precode tech-
niques of Raptor codes in [39, 69].

G1 G2 G3 G4 G5

H1 H2 H3 H4 H5

Figure 2.2: Precoding of BATS codes. Nodes in the first row represent the input packets. Nodes
in the second row represent the intermediate packets generated by the precode.

2.5 PERFORMANCEMETRICS
The design of the outer code and the inner code can be separated. The batch transfer matrices Hi

capture the effects of the network, including the network coding at the intermediate nodes on
the batches, i.e., the inner coding. For designing the outer code, it is not necessary to know the
details of the packet loss, network topology, et al. Evidently, the knowledge of the distribution
of Hi , i D 1; 2; : : : is sufficient. As we have discussed, the solvability of a batch depends only
on the rank of the batch transfer matrix. Hence, the knowledge of the rank distribution of the
batch transfer matrices is indeed already sufficient.

Let us take a closer look at how the batch transfer matrices affect the performance of
BATS codes. To evaluate the performance of a BATS code, we define several notations that
are related to transfer matrices. Suppose a destination node decodes successfully after receiving
n batches with transfer matrices fHi ; i D 1; : : : ; ng. The first is about the communication cost of
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a batch i , denoted by CCi . There are different ways to measure the communication cost of
a batch, depending on the system design constraints. For example, we may use the number of
columns of Hi as CCi , which determines the cost for receiving the batch at the destination node.
Alternatively, we may use the total number of packets belonging to the batch i transmitted by
all the network nodes as CCi if we care about the total cost for transmitting a batch from the
source node to the destination node. The communication cost is affected by the design of the
inner code, and can be separated from the design of the outer code.

Define the design coding rate of the outer code of a BATS code as K=n, and define the
(normalized) coding overhead as

CO D
1

n

nX
iD1

rk.Hi / �
K

n
:

We should design batch encoding and decoding schemes such that the coding overhead is as
small as possible, which can be understood from a linear operator channel point-of-view.

The operation of the network on the batches in (2.1) can be modeled as a channel with
input Xi and output Yi D XiHi , i D 1; 2; : : :, where the instance of Hi , regarded as the state of
the channel, is known by the receiver.This channel model is called a linear operator channel (LOC)
with receiver side channel state information. (Similar channel models have been studied without
the channel state information [33, 74].) The LOC is not necessary to be memoryless since Hi ,
i D 1; 2; : : : are not assumed to be independent. With receiver side channel state information,
the capacity of the LOC can be easily characterized. Consider that

lim
n!1

Pn
iD1 rk.Hi /

n

P
�! Nh:

The channel capacity of the above channel is upper bounded by Nh and the upper bound can be
achieved by random linear codes [99]. As a channel code for the LOC, the maximum achievable
rate of the outer code of a BATS code is bounded by Nh for any inner code with the average rank
of the transfer matrices converging to Nh.

For a BATS code, the coding rate normalized by the communication cost is

CR D
KPn

iD1 CCi

D

1
n

Pn
iD1 rk.Hi / � CO
1
n

Pn
iD1 CCi

:

When n tends to infinity, we have

lim
n!1

CR D

Nh � limn!1 CO
CC

;

where CC D limn!1
1
n

Pn
iD1 CCi . From the above analysis, we obtain two fundamental design

guidelines of BATS codes for both the outer coding and the inner coding, respectively.
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1. The outer code should minimize CO (or limn!1 CO) by designing a proper degree dis-

tribution. Suppose that the empirical rank distribution of Hi , i D 1; 2; : : : converges in
probability to .h0; h1; : : : ; hM /, so that

lim
n!1

Pn
iD1 rk.Hi /

n

P
�!

MX
iD0

ihi , Nh:

As we will discuss later, we have an outer code (a degree distribution) that can achieve a
rate very close to Nh, i.e., limn!1 CO can be very small and close to zero.

2. The design of the inner code is about the operations at an intermediate node, which affect
the distribution of Hi , i D 1; 2; : : :, and hence the rank distribution .h0; h1; : : : ; hM /. The
inner code affects both Nh and CC. Suppose the outer code has lim CO D 0. To maximize
lim CR, we should maximize Nh=CC. For a finite-length code, we want to design an inner
code that maximizes

Pn
iD1 rk.Hi /=

Pn
iD1 CCi , which is the average rank per communi-

cation cost.

2.6 SPECIALCASE: LTCODES
When the batch size is one, BATS codes as described above become LT codes. In this case,
since each batch has only one coded packet, network coding at the intermediate nodes becomes
forwarding as we do not allow coding across batches. Then h0, the probability that the batch
transfer matrix has rank zero, can be regarded as the end-to-end packet loss rate.

Due to the random generator matrix, the batch degree distribution ‰ is not the same as
the degree distribution usually referred to for LT codes. The degree of a batch may be larger
than the degree of the coded packet2 in the batch because certain entries of the generator matrix
may be equal to 0. For a batch with degree d , the degree of the coded packet in the batch is k

(k � d ) with probability
�

d
k

�
.1 � q�1/kq�.d�k/.

Our analysis (to be provided) uses the degree distribution of batches, which can be con-
verted into the degree distribution of coded packets. While this can be done, we have a simpler
approach to applying our analytical results to LT codes with respect to the degree distribution
of the coded packets.

When M D 1, to make ‰ the same as the coded packet degree distribution, we can use
the generator matrix with all entries being the identity of the base field to replace the random
generator matrix. Then the degree of a batch is the same as the degree of the coded packet in
the batch. Redefining (2.6) and (2.7) for G.s/ containing only the identity of the base field, we
have

„0 D h0; „
0
0 D 1 and „1 D „

0
1 D h1:

2A coded packet can be expressed as a linear combination of the input packets. The degree of the coded packet is defined as
the number of non-zero coefficients in the linear combination.
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So when M D 1, substituting the above values of „s and „0

s into the formulae to be obtained in
this paper, we obtain the corresponding results for LT codes with respect to the degree distri-
bution of the coded packets.

2.7 SUMMARYANDPERFORMANCECOMPARISON
BATS codes, introduced in [95, 97], generalize both fountain codes and random linear network
coding. If network coding is applied to all the packets generated by an LT code indistinguishably,
the degrees of the received packets will be changed so that the efficient decoding algorithm of
LT codes would fail. BATS codes resolve this issue by allowing only network coding for packets
belonging to the same batch so that the degrees of batches are not changed by network coding
at the intermediate nodes. Sufficient network coding gain can already be obtained by using very
modest values for M (e.g., 16 or 32).

Other approaches using fountain codes for multi-hop networks incur much higher trans-
mission delay, intermediate node storage cost, or higher decoding computation cost (see Ta-
ble 1.1). Compared with baseline random linear network coding schemes, BATS codes not only
have lower encoding/decoding complexity, but also smaller coefficient vector overhead and in-
termediate node caching requirement (see Table 1.1). Compared with other low-complexity
random linear network coding schemes like EC codes and L-chunked codes, BATS codes gen-
erally achieve higher (but not much higher) rates and have the extra feature that an unlimited
number of batches can be generated.

BATS codes can be used with different combinations of encoding/decoding options at the
source/destination nodes.

1. BATS encoding (no precoding) and BP decoding—This combination is suitable when
only a fraction of the input packets are required to be decoded.

2. BATS encoding with precoding and BP decoding—This combination can decode the
BATS code and the precode jointly, and it enables all the input packets to be recovered.

3. BATS encoding with precoding and inactivation decoding (to be discussed in Chap-
ter 8)—This combination enables all the input packets to be recovered, and it uses extra
computation to reduce the coding overhead.
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C H A P T E R 3

First BATSCode Protocol
In this chapter, we introduce a simple BATS code enabled network protocol called BATS-Pro-0,
which demonstrates how to use BATS codes for network communication.

In this book, we use 0 as the starting index for vectors and matrices. For a vector a of
length k, we denote by aŒi Wj � (0 � i � j � k � 1) the subvector of a from the i-th to the j -
th component. We also write aŒi � D aŒi Wi �, aŒW� D aŒ0Wk � 1� and aŒi W� D aŒi Wk � 1� to simplify
notations.

For an m � n matrix A, we denote by rk.A/ its rank and by AŒi1Wi2; j1Wj2� (i1 � i2, j1 � j2)
the submatrix of A formed by the entries from the i1-th to i2-th rows and from the j1-th
to j2-th columns. We also write AŒi; j1Wj2� D AŒi Wi; j1Wj2�, AŒi; j W� D AŒi Wi; j Wn � 1�, AŒW; j � D

AŒ0Wm � 1; j Wj �, etc.

3.1 BATS PROTOCOL STACK
Before introducing the details of BATS-Pro-0, we first introduce a general framework of using
BATS codes, called the BATS protocol stack. All the applications of BATS codes for network
communications can be designed following this framework.1 The BATS protocol stack has the
following five layers, from top to bottom:

• application layer;

• transport layer;

• network layer;

• link layer; and

• physical layer.

Although the layering is similar to that of the Internet protocol stack, the operations of the
transport and the network layers are totally different from those of TCP/IP. See Figure 3.1
for an illustration of the protocol stack in a line network with three hops. We give a general
description of each layer below.

The application layers at the source node and the destination node represent the two parties
that want to communicate. At the source node, the application layer sends a file transmission
1BATS codes also find applications in data storage, caching et al., where the framework of using BATS codes is different.
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Figure 3.1: BATS protocol stack.

request through an interface of the BATS protocol stack. The file transmission request is first
processed at the transport layer.

The transport layers at the source node and the destination node work together. They have
twomajor functions related to the outer code: batch generation and BATS code decoding. At the
source node, upon receiving a file transmission request from the application layer, the transport
layer will generate batches using the file. These batches will then be forwarded to the network
layer. At the destination node, upon receiving batches from the network layer, the transport layer
will try to decode the batches to recover the file. For a successfully decoded file, the transport
layer will forward the file to the application layer, and optionally send an acknowledgement back
to the source node.

The network layer implements the inner code (network coding). Upon receiving packets
from either the transport layer or the link layer, the network layer first checks if the current node
is one of the destination nodes. If so, the network layer will forward the packet to the transport
layer. The network layer then checks whether there is another destination node in the network
to which it needs to forward recorded packets. If so, the network layer applies network coding
to all the received packets belonging to the same batch, and then forwards the recoded packets
to the link layer. See Figure 3.2 for a flow chart for the network layer operations.

We note that for an intermediate network node, e.g., node R1 or R2 in Figure 3.1, neither
the transport layer nor the application layer exists. Therefore, we do not include them in the
figure for these nodes.

As discussed above, the transport layer and the network layer implement respectively the
outer code and the inner code of a BATS code. Although the link layer and the physical layer
do not directly implement any part of the encoding/decoding algorithm of a BATS code, the
properties of BATS codes affect the design of the link layer and the physical layer.

• First, the link layer does not need to retransmit a recoded packet, and hence the acknowl-
edgement indicating the receiving of each recoded packet is not necessary. The link layer
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Figure 3.2: Flow chart of the network layer operations.

may, however, employ a feedback mechanism for other purposes, e.g., link loss rate esti-
mation, which is useful in the design of recoding schemes.

• Second, the physical layer does not necessarily have a very low packet loss rate. Most
existing wireless communication systems use a large transmission power to guarantee a
very low packet loss rate in the worst case of the dynamic channel state to ensure that
TCP/IP works properly. In a BATS protocol, however, the physical layer can be redesigned
to provide a better tradeoff between the transmission power and the throughput for multi-
hop networks.

The link/physical layer of a BATS protocol can be built upon existing wireless communi-
cation protocols like IEEE 802.11 wireless LAN and IEEE 802.15.4 wireless PAN so that the
BATS protocol can make use of existing wireless transceiver hardware/software.

3.2 BATS-PRO-0 SPECIFICATION
We introduce BATS-Pro-0, the first implementation of the BATS protocol stack, which has the
following features.
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• The link layer feedback is not required.

• The buffer requirement at the intermediate network nodes can be as small as one batch.

• The recoded packets are generated by random linear network coding.

• The recoded packets of a batch are transmitted consecutively.

• The achievable rate is close to optimal when the batch size is relatively large.

BATS-Pro-0 was first introduced in [101].
Let K0 and T0 be two positive integers. At the source node, the input file is separated into

K0 packets of length T0 octets. Therefore, K0T0 determines the size of the input file.
In BATS-Pro-0, the batch size M can be a small power of 2, e.g., 8, 16, 32, and 64. Using

a larger batch size may not have much throughput advantage, but it significantly increases the
computation cost and coefficient vector overhead.

The base field for BATS code encoding is GF.256/ (i.e., q D 256), which takes 8 bits or
an octet to represent a field symbol. With GF.256/ as the base field, a batch becomes decodable
with high probability when its degree is reduced to the rank of the batch transfer matrix.

3.2.1 COEFFICIENTVECTORS
If the inner code uses the same base field as the outer code, the coefficient vector would have
M field symbols from GF.256/, i.e., M octets. However, it is not necessary that the inner code
uses the same finite field as the outer code. Consider a subfield of GF.256/ with qm elements. If
the inner code uses coefficients from GF.qm/ only, the coefficient vector can be represented by
M symbols from GF.qm/. For example, when qm D 2, the coefficient vector can be represented
in M=8 octets.

In addition to the smaller coefficient vector overhead, using a smaller finite field for the
inner code can reduce the computation cost for recoding. For BATS-Pro-0, qm can be 2k , k D

1; 2; : : : ; 8. We choose qm D 2 in the scenarios that the computation power of the network nodes
is extremely low, or the packet is very short.

3.2.2 TRANSPORTLAYER
The main operations of the transport layer are illustrated in Figure 3.3. The transport layer is
responsible for the encoding and decoding of batches, and performs an integrity check of the
transmitted file.

The transport layer takes the K0 packets of length T0 octets as the input. An optional
precode is first applied to these input packets to generate K > K0 precoded input packets. The
transport layer then generates batches using the batch encoding method in Section 2.1. The M

packets of a batch forwarded to the link layer have a format given in Figure 3.4.
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Figure 3.3: BATS-Pro-0 transport layer.
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M log2qm bits
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payload

Figure 3.4: The format of a transport-layer packet. A batch ID usually has one or two octets.
Taking M D 16 and qm D 2 as example, a coefficient vector has two octets.

• The first 16 bits are used for the batch ID to distinguish packets belonging to different
batches. The batch ID can also used as the seed to recover the pseudorandomness used in
the batch encoding and decoding.

• The coefficient vector consists of M field symbols from GF.qm/, each being represented
by log2 qm bits. Initially, the M coefficient vectors of a batch form the M � M identity
matrix over GF.qm/.

• The payload has T0 octets.

At a destination node, the transport layer decodes the original input file using the batches
it has received. The batch IDs are used for distinguishing the packets belonging to different
batches and for recovering the generator matrices of the batches. The coefficient vectors of the
received packets belonging to the same batch are used to recover the batch transfer matrix.When
there is no precoding, the BP decoding of BATS codes (introduced in Section 2.2) is applied
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to recover the K0 input packets or a fraction of them. When precoding is applied at the source
node, the decoding approaches introduced in Section 2.4 can be applied to decode the K0 input
packets.

3.2.3 NETWORKLAYER
The operations of the network layer of BATS-Pro-0 follows the flow chart in Figure 3.2, with
the details of the batch receiving, recoding, and transmitting operations described as follows.

Batch Receiving
The batch receiving module of the network layer has the flow chart given in Figure 3.5. The
design of this module is based on the assumption that the packets are received in the correct
order though some of them may be lost along the way. This can be guaranteed by the batch
transmitting module to be described. The batch receiving module has two variables: current batch
and readied batch. Initially, both variables are null.

The variable current batch is equal to the ID of the batch that is being received by the
network layer. When a packet is received by the network layer, the batch ID is first checked.

• If the batch ID is equal to the value of current batch, the packet is saved in the storage.

• If the batch ID is not equal to the value of current batch (which means that the packet just
received belongs to a new batch), in addition to saving the packet, the following operations
are performed: First, readied batch takes the value of current batch, and current batch takes
the value of the batch ID of the newly received packet. Second, a recoding procedure
described below is applied to the packets in the storage with batch ID equal to readied
batch to generate M recoded BATS packets.

Batch Recoding
For each batch such that the network layer receives at least one packet, the recoding generates
exactly M packets for the batch. The M recoded packets, generated using random linear network
coding (RLNC), are M different random linear combinations of the received packets belonging
to that batch, where the coefficients are chosen from GF.qm/ uniformly at random.

Batch Transmitting
BATS-Pro-0 transmits the M recoded packets for a batch consecutively once they are generated.
This way, at every non-source node in the network, the network layer receives all the packets
belong to one batch before the packets belonging to the next batch.

3.3 PERFORMANCEOFBATS-PRO-0
To simplify the discussion, we consider a line network of length l illustrated in Figure 3.6,
and assume that the network links are homogeneous, i.e., they have the same transmission rate
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Figure 3.5: Recoding module of the network layer.

and packet loss probability �. When there are no computation and storage constraints at the
intermediate network nodes, the min-cut capacity of the line network with length l is 1 � �

packet per use for any l > 0. Here 1 use of the network means the use of each network link at
most once; transmitting nothing on a network link in a particular time slot is allowed.

R1 R2 RƖ −1Src Dst

…

Figure 3.6: Line network of length l .
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3.3.1 INTERMEDIATE STORAGEANDTRANSMISSIONDELAY
In BATS-Pro-0, the source node generates batches and transmits a packet in each time slot.
The M packets of a batch are transmitted in M consecutive time slots, and the batches are
transmitted according to the order in which they are generated. In this subsection, we perform
an analysis of the storage requirement and transmission delay at an intermediate node under the
assumption of zero computation latency.

In the first M time slots, node R1 can potentially receive M packets belonging to the first
batch. In the first M � 1 time slots, node R1 saves the received packets in its buffer but transmits
nothing. In the M -th time slot, node R1 generates M coded packets by applying random linear
network coding to the packets in its buffer and the packet just received, all of which belong
to the same batch. After generating the M coded packets, the original received packets in the
buffer are deleted. Node R1 then transmits one of the coded packets and saves the remaining
M � 1 coded packets in its buffer. In each of the following M � 1 time slots, node R1 transmits
one of the remaining coded packets of the first batch and then deletes that packet in the buffer
immediately. During these time slots, if node R1 receives a new packet (belonging to the second
batch), the new packet is saved in the buffer. From the 2M -th to the .3M � 1/-th time slot,
node R1 repeats the above operations on the second batch, so on and so forth. All the other
intermediate nodes apply the same operations as node R1.

From the above analysis, each intermediate node caches at most M � 1 packets in the
buffer. There is a delay for each intermediate node: node Ri can only start to receive packets
after .i � 1/.M � 1/ time slots. For a network of fixed length, the delay is neglectable compared
with the total transmission time when the file size is large.

3.3.2 RANKDISTRIBUTIONFORRLNCRECODING
For BATS-Pro-0, the network operations on each batch are independent, and the rank distri-
butions of all the batches are the same. Now let us study the rank distribution of a batch for
RLNC Recoding. Let �i , i D 0; 1; : : : ; l be the rank distribution of a batch at node Ri where
R0 D Src and Rl D Dst. For RLNC Recoding, the rank of a batch at node Ri , i D 0; 1; : : : ; l

forms a homogeneous Markov chain. Denote by PR the probability transition matrix of this
Markov chain. Then

�i D �0.PR/i ;

with �0ŒM � D 1. Thus to characterize the rank distribution �i , we only need to know PR. Note
that PR is lower-triangular. Write

�m
r . Qq/ D

�
.1 � Qq�m/.1 � Qq�mC1/ � � � .1 � Qq�mCr�1/ 0 < r � m;

1 r D 0;

and
�

m;r
k

. Qq/ ,
�m

k
. Qq/�r

k
. Qq/

�k
k

. Qq/ Qq.m�k/.r�k/
:
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Lemma 3.1 For 0 � j � i � M , PRŒi; j � D
PM

rDj

�
M
r

�
.1 � �/r�M �r�

i;r
j .qm/.

Proof. Consider that a node receives a batch of rank i and generates M recoded packets using
RLNC recoding. The probability that r (r � j ) packets of the batch is received at the node in
the next hop is

�
M
r

�
.1 � �/r�M �r . Since each recoded packets is the linear combination of the

received packets with the coefficients chosen uniformly at random from GF.qm/, the probability
that the r received packets have rank j is �

i;r
j .qm/. The lemma is proved by considering all r � j .

�

3.3.3 OPTIMALITYWHENBATCHSIZE IS LARGE
According to the following lemma, when M tends to infinity, the normalized expected rank will
converge to 1 � �. Therefore, for line networks with link erasure probability �, BATS-Pro-0 can
achieve a normalized rate very close to 1 � � when M is sufficiently large.

Lemma 3.2 For l � 1, limM !1

P
r r�l Œr�=M D 1 � �.

Suppose that each lost packets on a network link is represented by an all-zero packet, and
hence each node always receives M packets for a batch. Denote by H the transfer matrix of a
batch at a network node. The recoding at the node is given by a totally random M � M matrix
ˆ over GF.qm/. The transmission of the recoded batch through a network link can be modeled
by an M � M random diagonal matrix E with independent components, where a diagonal com-
ponent is 0 with probability � and is 1 with probability 1 � �. Hence, the transfer matrix for the
batch received at the network node on the next hop can be expressed as

H0
D HˆE:

To prove the above lemma, we only need to show that if limM !1 EŒrk.H/�=M � 1 �

�, then limM !1 EŒrk.H0/�=M D 1 � �. First, we have EŒrk.H0/� D EŒrk.HˆE/� � EŒrk.E/� D

.1 � �/M . We then prove that for any ı > 0,

lim
M !1

Pr
� rk.H0/

M
� 1 � � � ı

�
D 1; (3.1)

which implies limM !1 EŒrk.H0/�=M � 1 � �.
It remains to prove (3.1). Toward this end, let t D 1 � � � ı, ı > 0 and consider

Pr
n rk.H0/

M
� t

o
D Pr

n rk.HˆE/

M
� t

o
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n rk.HˆE/
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� t C
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;
rk.E/
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n rk.H/

M
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o
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where the last two terms on the RHS of (3.2) converge to 1 as M ! 1. Since

Pr
n rk.HˆE/

M
� t

ˇ̌̌ rk.H/

M
� t C

ı

2
;
rk.E/

M
� t

o
� Pr

˚
rk.HˆE/ D dMte

ˇ̌
rk.H/ D dM.t C ı=2/e; rk.E/ D dMte

	
D �

dM.tCı=2/e

dMte
.qm/;

where the equality follows from (2.5) and �
dM.tCı=2/e

dMte
.qm/ ! 1 as M ! 1, the RHS of (3.2)

converges to 1 as M ! 1.

3.3.4 ACHIEVABLERATEFORFIXEDBATCHSIZE
We, however, are more interested in the performance for small values of M , which can be char-
acterized numerically. We calculate the normalized expected rank

P
r r�l Œr�=M for � D 0:2 and

qm D 2 or 256 in Figure 3.7.
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Figure 3.7: Expected ranks of the chunk transfer matrices for line networks with BATS-Pro-0
where � D 0:2 and l D 1; : : : ; 50.

When M D 1, the outer code becomes an LT/Raptor code, and the BATS-Pro-0 recod-
ing becomes multiplying each received packet by a random coefficient, which is equivalent to
forwarding from the performance point of view. Therefore, the effective end-to-end packet loss
rate is

�l Œ0� D 1 � .1 � �/.1 � q�1
m .1 � �/ � �/l�1:



3.3. PERFORMANCEOFBATS-PRO-0 45

When qm is very large, the loss rate is very close to 1 � .1 � �/l , which is the end-to-end packet
loss rate when the packets are forwarded without multiplying by a random coefficient. The
achievable rate for the length-l line network when M D 1 is .1 � �/l , which decreases quickly
as the network length increases.

Compared with M D 1, the normalized expected rank decreases slowly as the network
length increases when M � 2. For a fixed network length, Figure 3.7 illustrates the tradeoff
between the batch size and the maximum achievable rates of BATS codes (without considering
the coefficient vector overhead). We see that once M is larger than 32, using a larger batch size
only brings a marginal rate gain (but increases significantly the computation cost).

We also note that when M D 32 or 64, the performances of qm D 2 and qm D 256 are
very close to each other. In other words, it is feasible to use the binary field for the inner code
when the batch size is not too small. Note that using the binary field for recoding can reduce
the coefficient vector overhead and the recoding computation cost.

Now we look at the requirement for the batch size M for different values of the packet loss
rate �. Suppose we want to achieve the throughput 0:7.1 � �/ in a homogenerous line network
with 10 hops. From the first two rows of Table 3.1, we see that the higher the loss rate, the
larger the batch size is required to achieve the desired throughput, and the increase is faster
than a linear function of 1=.1 � �/ (see the third row in Table 3.1). When � D 0:9, for example,
a batch size of 220 is required, but a large batch size would result in a large coefficient vector
overhead and computation cost. We will discuss how to resolve this issue in Chapter 4.

Table 3.1: The batch size M for achieving a throughput of 0:7.1 � �/ in a homogenerous line
network with 10 hops. Here q D 256.

ϵ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

M 4 8 12 18 26 39 59 99 220

M (1 – ϵ) 3.6 6.4 8.4 10.8 13 15.6 17.7 19.8 22
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C H A P T E R 4

Advanced Recoding
Techniques

In Chapter 3, we discussed a basic recoding scheme called BATS-Pro-0, where the network layer
generates M (same as the batch size) recoded packets for each batch using RLNC. Though it is
capacity achieving when M ! 1, we need a better scheme for a relative small batch size M .

In this chapter, we study how to improve RLNC at network nodes by (i) generating a
number of recoded packets that may be different from M , and (ii) using simpler approaches to
generate the recoded packets. The new recoding scheme improves the performance when the
recoding field size is small, and reduces the recoding computation cost. Moreover, by increasing
the number of recoded packets, a small batch size can be applied even in the case of high packet
loss rate.

We use line networks as examples to discuss our recoding techniques, though these tech-
niques also apply to general networks. For a node u in a line network, we use uC and u� to
denote the node at the next hop (closer to the destination node) and the node at the previous
hop (closer to the source node), respectively. For real numbers x and y, denote their minimum
and maximum by x ^ y and x _ y, respectively.

4.1 PROPERLINEARRECODING
Linear network coding on packets belonging to the same batch will be referred to as linear
recoding. With linear recoding at every intermediate node, the end-to-end transformation of a
batch is a linear operation. We first give a general characterization of linear recoding. Recall that
we use GF.qm/, a subfield of the base field, for linear recoding.

Suppose a network node receives k packets of a batch with the coefficient matrix H, which
is an M � k matrix over GF.qm/ formed by juxtaposing the coefficient vectors of the k packets.
The rank of H is r , 0 � r � M , which is also called the rank of the batch at the node.

A linear recoding scheme takes both the received packets and an integer M 0 as the input,
and generates M 0 recoded packets with the coefficient matrix

H0
D Hˆ;

where ˆ is a k � M 0 matrix over GF.qm/ called the recoding generator matrix. Note that ˆ can
be deterministic or random. If we can find r linearly independent columns of H, denoted by H�,
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the linear coding scheme can be further written as

H0
D H�ˆ�;

where ˆ� is an r � M 0 matrix over GF.qm/ called the reduced recoding generator matrix. The
matrices ˆ and ˆ� both characterize a recoding scheme. For the RLNC recoding discussed in
Chapter 3, ˆR (or ˆ�

R) is a totally random matrix over GF.qm/.
Same as the last chapter, we use a binary M 0 � M 0 diagonal matrix E to indicate packet

losses for the M 0 recoded packets when they are transmitted to the node at the next hop, where a
“0” in the diagonal indicates a packet loss and a “1” in the diagonal indicates a correctly received
packet. We are concerned about the rank of the batch received at the node at the next hop, given
by rk.H0E/. Since H� is of full column rank, we have

rk.H0E/ D rk.H�ˆ�E/ D rk.ˆ�E/;

i.e., the rank of the batch received at the node at the next hop is rk.ˆ�E/, a random variable
that depends on r , M 0, and the elements of ˆ� and E. The diagonal elements of E, representing
the packet loss pattern of the transmitted packets, can be assumed to be independent of both H
and ˆ�. In all of our recoding approaches, the choice of the rM 0 elements of ˆ� is independent
of H given its rank.

4.1.1 GENERALGUIDELINES
We provide some general guidelines about how to design recoding schemes. Consider two
batches, where the first batch has the transfer matrix rank equal to r1 and the number of re-
coded packets equal to M 0

1, and the second batch has the transfer matrix rank equal to r2 and
the number of recoded packets equal to M 0

2. Let r1 D rk.H1/ and r2 D rk.H2/.

Definition 4.1 A linear recoding scheme is said to be proper if it satisfies the following three
conditions.

1. When r1 > r2 and M 0
1 D M 0

2, the first batch potentially has a higher rank at the network
node at the next hop.

2. When r1 D r2 and M 0
1 D M 0

2, both batches should have the same rank distribution at the
network node at the next hop.

3. When r1 D r2 and M 0
1 > M 0

2, the first batch potentially has a higher rank at the network
node at the next hop.

Let us explain these three conditions and discuss how to design recoding schemes to satisfy
these conditions.



4.1. PROPERLINEARRECODING 49
We first consider the case r1 > r2 and M 0

1 D M 0
2 D M 0. The recoding scheme generates

M 0 recoded packets for both batches using the reduced recoding generator matrices ˆ�
1 and ˆ�

2 ,
respectively, where ˆ�

1 is r1 � M 0 and ˆ�
2 is r2 � M 0. The first condition requires that for any

binary M 0 � M 0 diagonal matrix E,

Prfrk.ˆ�
1E/ � j g � Prfrk.ˆ�

2E/ � j g; j D 0; 1; : : : ; M: (4.1)

We also write (4.1) as
rk.ˆ�

1E/ < rk.ˆ�
2E/:

When ˆ�
2 is a submatrix of ˆ�

1 , we have Prfrk.ˆ�
1E/ � rk.ˆ�

2E/g D 1, and hence the first con-
dition is satisfied.

We then consider the case r1 D r2 and M 0
1 D M 0

2. To satisfy the second condition, we can
use the same reduced recoding generator matrices for both batches.

Now we consider the case that r1 D r2 and M 0
1 > M 0

2. The recoding scheme generates M 0
1

and M 0
2 recoded packets using the reduced recoding generator matrices ˆ�

1 and ˆ�
2 , respectively,

where ˆ�
1 is r1 � M 0

1 and ˆ�
2 is r2 � M 0

2. The third condition says that if M 0
1 > M 0

2, then for any
binary M 0

1 � M 0
1 diagonal matrix E1,

rk.ˆ�
1E1/ < rk.ˆ�

2E2/; (4.2)

where E2 D E1Œ0 W M 0
2 � 1; 0 W M 0

2 � 1�. When ˆ�
2 is the first M 0

2 columns of ˆ�
1 , we have

Prfrk.ˆ�
1E1/ � rk.ˆ�

2E2/g D 1, and hence the third condition is satisfied.
From the above analysis, we obtain a general approach to design a proper recoding scheme:

First, design a reduced recoding transfer matrix ˆ� with dimension M � M 0 for the maximum
value of M 0, and then use the submatrices of ˆ� as the reduced recoding transfer matrices of
other dimensions. Since a totally random matrix of a smaller dimension can be regarded as
a submatrix of a totally random matrix of a larger dimension (in both row and column), the
RLNC recoding discussed in the last chapter is proper. We will introduce another class of proper
recoding schemes later in this chapter.

4.1.2 PROPERTRANSITIONMATRIX
The batches received at a network node u may have different ranks. Suppose the (empirical)
rank distribution of the batches received at a network node is � , which is a vector with M C 1

entries.1 Nowwe study how a proper recoding scheme affects the rank distribution of the batches
received at uC, the node at the next hop. Assume that M 0 recoded packets are generated for all
the received batches (of different ranks), and let the packet loss rate on .u; uC/ be �.

For a batch of rank r received at node u, its rank is s at node uC with probability
Prfrk.ˆ�E/ D sg, where ˆ� is the r � M 0 reduced recoding generator matrix and E is an
1Note that we do not assume that the ranks of all the batches are independent.
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M 0 � M 0 random diagonal matrix E with independent components, where a diagonal compo-
nent is 0 with probability � and is 1 with probability 1 � �.The transition of the rank distributions
between nodes u and uC can be given by an .M C 1/ � .M C 1/ probability transition matrix
P, called a rank transition matrix, so that the rank distribution at node uC is �P.

For the RLNC recoding with M 0 D M , the rank transition matrix is characterized in
Lemma 3.1. For a general value of M 0, Lemma 3.1 can be generalized as follows. Denote by PR
the rank transition matrix between nodes u and uC for the RLNC recoding, where M 0 recoded
packets are generated and the packet loss rate on .u; uC/ is �.

Lemma 4.2 For 0 � j � i � M , PRŒi; j � D
PM 0

kDj

�
M 0

k

�
.1 � �/k�M 0�k�

i;k
j .qm/.

For two rank distributions � and � 0, we say that � dominates � , denoted by � < � 0,
if
PM

rDj �Œr� �
PM

rDj � 0Œr� for all j D 1; : : : ; M . If �1 < � 0
1 and �2 < � 0

2, then ˛�1 C .1 �

˛/�2 < ˛� 0
1 C .1 � ˛/� 0

2. The dominance relation gives a partial order on the rank distributions.

Definition 4.3 We say a rank distribution transition matrix P is proper if for any rank distri-
butions � and � 0 with � < � 0, we have �P < � 0P.

Lemma4.4 An .M C 1/ � .M C 1/ transitionmatrixP is proper if and only ifPŒi; W� < PŒi � 1; W

�, for all i D 1; : : : ; M .

Proof. We use ei to denote a row .M C 1/-vector of the form .0; : : : ; 0; 1; 0; : : : ; 0/, with the
i th entry being 1. Then ei < ei�1. If P is proper, we have PŒi; W� D eiP < ei�1P D PŒi � 1; W�.
On the other hand, suppose that we have a rank distribution transition matrix P with PŒi W� <
PŒi � 1; W�, for all i D 1; : : : ; M . For any rank distributions � and � 0 with � < � 0, construct �k ,
k D 0; 1; : : : ; M as follows.

• �0 D � .

• For k D 1; : : : ; M ,

�kŒ0 W M � k � 1� D �k�1Œ0 W M � k � 1�

�kŒM � k� D �k�1ŒM � k� C �k�1ŒM � k C 1� � � 0ŒM � k C 1�

�kŒM � k C 1 W M� D � 0ŒM � k C 1 W M�:
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It can be checked inductively that �M D � 0 and �k�1 < �k for k D 1; : : : ; M . By �k�1 < � 0 for
k D 1; : : : ; M , we have

0 �
X

rDM �kC1

�k�1Œr� �
X

rDM �kC1

� 0Œr�

D �k�1ŒM � k C 1� C
X

rDM �kC2

�k�1Œr� �
X

rDM �kC1

� 0Œr�

D �k�1ŒM � k C 1� C
X

rDM �kC2

� 0Œr� �
X

rDM �kC1

� 0Œr�

D �k�1ŒM � k C 1� � � 0ŒM � k C 1�: (4.3)

We can then verify that �k�1P < �kP for k D 1; : : : ; M as follows. Write

�k�1P D

MX
iD0

�k�1Œi �PŒi; W�

D

M �k�1X
iD0

�k�1Œi �PŒi; W� C �k�1ŒM � k�PŒM � k; W�

C.�k�1ŒM � k C 1� � � 0ŒM � k C 1�/PŒM � k C 1; W� C

MX
iDM �kC1

� 0Œi �PŒi; W�

<
M �k�1X

iD0

�k�1Œi �PŒi; W� C �k�1ŒM � k�PŒM � k; W�

C.�k�1ŒM � k C 1� � � 0ŒM � k C 1�/PŒM � k; W� C

MX
iDM �kC1

� 0Œi �PŒi; W�

<
M �k�1X

iD0

�k�1Œi �PŒi; W� C �k�1ŒM � k�PŒM � k; W� C

MX
iDM �kC1

� 0Œi �PŒi; W� (4.4)

<
MX

iD0

�kŒi �PŒi; W� (4.5)

D �kP;

where (4.4) follows from (4.3), and (4.5) follows from PŒM � k C 1; W� < PŒM � k; W�. �

Consider a proper recoding scheme with a rank transition matrix P, where the same
number of recoded packets is generated for all the batches. By checking the first condition of
Definition 4.1, we see that PŒi; W� < PŒi � 1; W� for all i D 1; : : : ; M , and hence P is proper by
Lemma 4.4.

4.2 SYSTEMATICRECODING
Following the notations in the last section, k is the number of received packets belonging to a
batch and r is the number of packets with linearly independent coefficient vectors among the k
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received packets. Suppose wewant to generate and transmit M 0 recoded packets belonging to the
batch to the node at the next hop. When using RLNC as the recoding scheme, the computation
cost and the recoding delay are as follows.

• Generating 1 new packet using random linear combinations takes T k finite-field multipli-
cations. Alternatively, we can select r linearly independent packets among the k received
packets, and then apply RLNC on these r packets. It takes O.r3/ finite-field operations
for determining the r linearly independent packets, and T r finite-field multiplications
for generating 1 recoded packet. RLNC generates totally M 0 new recoded packets using
random linear combinations.

• A relay node using RLNC can start to transmit the first recoded packets of the batch
only after all the k packets have been received. If all the packets of the same batch are
transmitted consecutively, then the recoding delay of this batch is at least k time slots.

We introduce a new class of recoding technique called systematic recoding, which reduces
both the recoding computation cost and the recoding delay.

4.2.1 FIRST SYSTEMATICRECODINGSCHEME (SR-1)
The first systematic recoding scheme is called SR-1, where we choose r linearly independent
received packets as the recoded packets, and generate M 0 � r new recoded packets using random
linear combination of the r linearly independent received packets. The computation cost of SR-
1 for generating the recoded packets is only 1 � r=M 0 of that of RLNC. In addition, it takes
O.r3/ finite-field operations for determining the r linearly independent packets.

Let us compare systematic recoding and RLNC by using the expected rank of the batch
at the node at the next hop. Let ˆ�

S be the reduced recoding generator matrix of SR-1. Recall
that ˆ�

R is the reduced recoding generator matrix of RLNC. ˆ�
S and ˆ�

R are r � M 0 matrices
with the following specifications.

• ˆ�
R is a totally random matrix over GF.qm/.

• The first r columns of ˆ�
S is the identity matrix, and the remaining M 0 � r columns are

totally random over GF.qm/.

In SR-1, the first r recoded packets (uncoded) are called symmetric packets, and the last M 0 � r

recoded packets are called RLNC packets. Intuitively,

rk.ˆ�
SE/ < rk.ˆ�

RE/ (4.6)

because the first r columns of ˆ�
S are always linearly independent. One technique to show the

above inequality is coupling: notice that the probabilities on both sides of the inequality do not
change if we make the last M 0 � r columns of ˆ�

S and ˆ�
R the same. The above inequality then

follows from the fact that the subspace spanned by the first r column of ˆ�
R is a subset of that of
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ˆ�

S. The condition (4.6) further implies that EŒrk.ˆ�
SE/� � EŒrk.ˆ�

RE/�, i.e., in general, SR-1 is
better than RLNC for recoding.

Moreover, since the first r columns of ˆ�
R tends to be full rank as qm ! 1, we have

lim
qm!1

Prfrk.ˆ�
SE/ � ag D lim

qm!1
Prfrk.ˆ�

RE/ � ag; for all a D 0; 1; : : : ; M:

In other words, when the field size qm is large (e.g., 256 when M D 16), RLNC and SR-1 have
almost the same recoding performance.

Denote by PS the rank transition matrix between two consecutive nodes for SR-1, where
the packet loss rate between these two nodes is � and M 0 recoded packets are generated for all
batches. We see that PS is a lower triangular matrix and the distribution of rk.ˆ�

SE/ is the r-th
row of PS.

Lemma 4.5 For 0 � j � i � M ,

PSŒi; j � D

(PM 0

vDj

Pj

aD0_.vCi�M 0/

�
M 0�i
v�a

��
i
a

�
.1 � �/v�M 0�v�

i�a;v�a
j �a .qm/ i < M 0;�

M 0

j

�
.1 � �/j �M 0�j i � M 0:

Proof. Consider that node u receives a batch of rank i and generates M 0 recoded packets using
SR-1. When i � M 0, all the M 0 recoded packets are linearly independent, and hence the rank
of the batch at node uC is equal to the number of received packets.

When i < M 0, among these M 0 recoded packets, i of them are systematic packets, and
M 0 � i of them are RLNC packets. Since M 0 packets are transmitted, the probability that v

packets are received at uC is .1 � �/v�M 0�v. Among the v received packets, the probability that
a of them are systematic packets and v � a of them are RLNC packets is

�
M 0�i
v�a

��
i
a

�
. The a

systematic packets are linearly independent, and the probability that the v � a RLNC packets
are linearly independent with the a systematic packets and have rank j � a is �

i�a;v�a
j �a .qm/.

Considering all the possible value of v, we prove the lemma. �

4.2.2 SIMPLIFIED SYSTEMATICRECODING (SR-2)
The recoding computation complexity and the transmission delay of SR-1 can be further reduced
by using all the received packets as the recoded packets. We call this scheme SR-2.

1. When M 0 � r , M 0 linearly independent received packets are transmitted as the recoded
packets.

2. When r < M 0 � k, the r linearly independent received packets and M 0 � r other received
packets are transmitted as the recoded packets.
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3. When M 0 > k, the k received packets are used as the recoded packets, and M 0 � k new

recoded packets are generated using random linear combinations of the k received packets.

In the first case (M 0 � r), SR-1 and SR-2 both only forward the packets the relay node has
received, and do not generate any new packets. In the second case (r < M 0 � k), SR-2 just
forwards the packets the relay node has received while SR-1 generates M 0 � r new packets. In
the third case (M 0 > k), SR-2 generates M 0 � k new packets and SR-1 generates M 0 � r new
packets. In other words, SR-2 generates fewer new packets using random linear combination
than SR-1 when r < k and M 0 > r .

Note that in SR-2, it is not necessary to select r linearly independent packets among the k

received packets. Thus compared with RLNC and SR-1, O.r3/ finite-field operations are saved.
Now we compare the transmission delay of SR-2 and SR-1 when M 0 � k, which usually

holds for most practical cases (see the next section). In this case, all the received packets can be
transmitted in SR-2 and only r linearly independent received packets can be transmitted in SR-
1. Therefore, in SR-2, the network node can transmit a packet right after receiving it without
any extra transmission delay, while in SR-1, the network node can transmit at most r packets
before receiving all the k packets and hence has at least k � r time slots more transmission delay
than SR-2.

Next, we show that when all the parameters are the same, SR-1 and SR-2 result in the
same rank distribution at the node at the next hop. Consider that the node at the previous hop
u� transmits M 0 recoded packets for a batch with rank m. Denote by H the coefficient matrix
of these M 0 packets, where the first m columns of H are linearly independent and the remaining
columns are independently and uniformly distributed on the subspace spanned by the first m

columns. Due to packet loss, node u only observes the columns of H with indices in a subset
K � f0; 1; : : : ; M 0 � 1g. For a subset A � f0; 1; : : : ; M 0 � 1g, we denote by HA the submatrix
formed by the columns of H with indices in A. Suppose rk.HK/ D r .

We first see that for SR-1, the coefficient matrix H0
SR-1 of the M 0 recoded packets gener-

ated at node u has the property that

(1) r out of the M 0 columns of H0
SR-1 are linearly independent; and

(2) the other M 0 � r columns of H0
SR-1 are independently and uniformly distributed on the

subspace spanned by the r linearly independent columns.

For SR-2, the coefficient matrix H0
SR-2 of the M 0 recoded packets generated at node u has

HK as a submatrix. The part of H0
SR-2 that is not in the submatrix HK is generated by random

linear combination of the columns in HK. The following lemma implies that H0
SR-2 satisfies the

same property (1) and (2) as H0
SR-1.

Lemma 4.6 There exists a partition fI;J g of K such that jIj D r , rk.HI/ D r , and the columns
of HJ are independent and uniformly distributed on the subspace spanned by the columns of HI .
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Proof. Since the first m columns of H are linearly independent, we expandK \ f0; 1; : : : ; m � 1g

to form I such that jIj D r and rk.HI/ D r , which is feasible since rk.HK/ D r .
Since J \ f0; 1; : : : ; m � 1g D ;, we know that the columns of H with indices in J are

independent and uniformly distributed on the subspace spanned by the first m columns of H.
Under the condition that rk.HI/ D rk.HI[J / D r , the columns of HJ are independent and
uniformly distributed on the subspace spanned by the columns of HI . �

The same property (1) and (2) of H0
SR-1 and H0

SR-2 implies that the recoded packets gen-
erated by both schemes induce the same rank distribution at the node uC. Applying the above
analysis on all the relay nodes inductively with the source node as the first node, we see that
SR-1 and SR-2 have exactly the same recoding performance in line networks.

4.2.3 COMPARISONOFRLNCANDSYSTEMATICRECODING
We compare the performance of RLNC and systematic recoding numerically. Here we pick
l D 20, � D 0:2 and M D M 0 D 16. We calculate the rank distributions at the destination node
for RLNC and systematic recoding, respectively, for qm D 2 and 256. Table 4.1 lists the ex-
pected rank distribution for both RLNC and systematic recoding. We observe clear advantage
of systematic recoding for qm D 2. Both RLNC and systematic recoding have almost the same
expected ranks for qm D 256.

Table 4.1: RLNC vs. systematic recoding

(a) qm  = 2

Ɩ 1 2 3 4 5 6 7 8 9 10

RLNC 0.7891 0.7166 0.6745 0.6451 0.6226 0.6045 0.5893 0.5762 0.5647 0.5545

SR 0.8 0.7275 0.6859 0.6570 0.6351 0.6174 0.6027 0.5901 0.5789 0.5691

(b) qm  = 256

Ɩ 1 2 3 4 5 6 7 8 9 10

RLNC 0.8000 0.7445 0.7149 0.6951 0.6805 0.6689 0.6594 0.6514 0.6444 0.6383

SR 0.8 0.7445 0.7149 0.6951 0.6805 0.6689 0.6594 0.6514 0.6444 0.6383

4.3 NUMBEROFRECODEDPACKETS
Consider a line network of length l (l � 1), as shown in Figure 3.6, and use R0 and Rl to
denote the source node and the destination node, respectively. We assume that the links in the
line network transmit one packet per use, but can have different packet loss rates. Denote by �k

the loss rate on link .Rk�1; Rk/.
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Let Mk , k D 0; 1; : : : ; l � 1 be the number of recoded packets to be generated for a batch

at node Rk , and let �k , k D 0; 1; : : : ; l be the rank distribution of a batch at node Rk . A network
node may use different methods to generate the recoded packets, e.g., RLNC or systematic
recoding. Since a network node uses only its received packets for recoding, the rank of a batch
at node Ri , i D 0; 1; : : : ; l form a Markov chain. That is, for k > 0,

�k D �k�1Pk;

where Pk is the rank transition matrix from node Rk�1 to Rk .
The matrix Pk is determined by the recoding method at node Rk�1. When the network

node applies RLNC, according to Lemma 4.2, for 0 � j � i � M ,

PkŒi; j � D

Mk�1X
rDj

 
Mk�1

r

!
.1 � �k/r�

Mk�1�r

k
�

i;r
j .qm/;

where Mk�1 is a fixed parameter and �k can be measured at node Rk . When the network node
applies systematic recoding, according to Lemma 4.5, for 0 < j � i < Mk�1,

PkŒi; j � D

Mk�1X
rDj

jX
aD0_.rCi�Mk�1/

 
Mk�1 � i

r � a

! 
i

a

!
.1 � �/r�

Mk�1�r

k
�

i�a;r�a
j �a .qm/;

and for i � Mk�1 and 0 < j � i � M , PkŒi; j � D
�

Mk�1

j

�
.1 � �/j �

Mk�1�j

k
.

4.3.1 GLOBALOPTIMIZATION
As shown in Table 3.1, using Mk D M for all k in BATS-Pro-0 does not give a good perfor-
mance when the packet loss rates are high (e.g., 0:9) and M is relatively small (e.g., 16). We now
study how to choose Mk , k D 0; 1; : : : ; l � 1 such that a relatively small batch size can also be
applied for used packet loss rate.

Our objective is to maximize the expected rank per network use at the destination node,
where the network use QM is the maximum number of times that a network link is used for
transmitting a batch. In other words, we want to maximize EŒ�l �= QM , such that Mk � QM for all
k.

Theorem 4.7 For a proper recoding scheme, EŒ�l �= QM with Mk � QM for all k is maximized when
Mk D QM , k D 0; 1; : : : ; l � 1.

Proof. Fix an integer k with 0 � k � l � 1 and Mk D M 0 < QM . We will show that if we increase
Mk by one, which preserves the feasibility, EŒ�l � would not be decreased. Repeating the above
procedure proves the lemma.
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Denote by P0

k
and � 0

k
the corresponding rank transition matrix and rank distribution

when Mk D M 0 C 1. Since only Mk is increased, �k D � 0
k
and Pj D P0

j , j D k C 2; : : : ; l . The
definition of proper recoding implies that P0

kC1
Œi; W� < PkC1Œi; W� for i D 0; 1; : : : ; M . There-

fore, � 0
kC1

< �kC1. By Lemma 4.4, we know that Pj , j D k C 2; : : : ; l are all proper. Hence,
using the properties of a proper rank transition matrix, we have � 0

l
D � 0

kC1
P0

kC2
: : : P0

l
D

� 0
kC1

PkC2 : : : Pl < �kC1PkC2 : : : Pl D �l . �

This lemma says that we only need to let Mk D QM , k D 0; 1; : : : ; l � 1, and thenmaximize
EŒ�l �= QM . In other words, we can find the optimal values of Mk , k D 1; : : : ; l by solving the
following optimization problem

max
QM

EŒ�l �= QM

s.t. Mk D QM; k D 0; 1; : : : ; l � 1:
(4.7)

Denote by NR� the optimal value of (4.7). In general, we know that NR� � 1 � �. When l D 1,
the upper bound can be achieved using QM D M and systematic recoding.

When l > 1, NR� can be solved numerically. For each given value of QM , we can numerically
evaluate EŒ�l �= QM using the formula of Pk with Mk D QM . Note that we do not need to consider a
very large value of QM . Suppose we have a design objective of NR� � .1 � �/=2. Since EŒ�l � � M ,
we have EŒ�l �= QM < M= QM . If M= QM � .1 � �/=2, then EŒ�l �= QM < .1 � �/=2, and hence the
design objective cannot be satisfied. So, we need M= QM > .1 � �/=2, or QM < 2M=.1 � �/. If we
cannot find EŒ�l �= QM � .1 � �/=2 for all QM < 2M=.1 � �/, we need to increase the batch size
M and run the above optimization process again.

We discuss a special case of the maximization problem when M D 1. In this case, the
repetition recoding scheme is applied, where if at least one packet is received for a batch, the
received packet is transmitted QM times. The expected rank of a batch in this case is equal to the
probability that a batch has rank 1 at the destination node, so that

EŒ�l �

QM
D

.1 � �
QM /l

QM
; (4.8)

which can be optimized explicitly.

Theorem 4.8 When M D 1, l > 1 and the repetition recoding scheme is applied, the optimization
(4.7) is maximized when QM is an integer around t�.l/

ln.1=�/
, where ln l < t�.l/ < 2 ln l is the solution

of et � 1 � lt D 0; t > 0, and hence the optimal value NR� of (4.7) is ‚
�

ln.1=�/
ln l

�
.

Proof. To maximize (4.8), we relax QM to a real number and solve d EŒ�l �= QM

d QM
D 0, i.e.,

1 � �
QM

C l QM�
QM ln � D 0; (4.9)
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or

�� QM
� 1 C l QM ln � D 0:

Let t D � QM ln �, and denote by t�.l/ the solution of g.t/ , et � 1 � lt D 0; t > 0. Then the
solution of (4.9) is QM � D t�.l/= ln.1=�/.

We know that g.t/ < 0 for 0 < t < t�.l/; and g.t/ > 0 for t > t�.l/. Since g.ln l/ D l �

1 � l ln l < 0 and g.2 ln l/ D l2 � 1 � 2l ln l > 0 when l > 1, we have ln l < t�.l/ < 2 ln l when
l > 1. Last, using �

QM �

D e�t�.l/,

0:25 � .1 � 1=l/l
� .1 � �

QM �

/l
�
�
1 � 1=l2

�l
< 1;

and hence NR� D .1 � �
QM �

/l= QM � D ln.1=�/.1 � �
QM �

/l=t�.l/ D ‚.ln.1=�/= ln l/. �

4.3.2 NUMERICALEVALUATIONS
In this subsection, we maximize EŒ�l �= QM for various cases to investigate the performance of sys-
tematic recoding in the line network shown in Figure 3.6. We assume that �k D �, k D 1; : : : ; l .
Denote by QM � the value of QM maximizing (4.7).

QM � for different network lengths
We evaluate QM � for different network length l . The numerical results are given in Fig. 4.1, where
(a) is the zoom-in of (b) for l D 1; 2; : : : ; 50. For fixed M and qm, we see that QM � increases
slowly with the network length, and takes constant values piecewisely. Similar to the special
case illustrated in Theorem 4.8, QM � is roughly in proportion to ln l . For fixed l and qm, we see
that QM � increases roughly linearly with M .

NR� for different network lengths
We first evaluate NR� with respective to different network length l . The value of NR� is an upper
bound on the achievable rates of BATS codes. The numerical results are given in Figure 4.2,
where Figure 4.2a is the zoom-in of Figure 4.2b for l in the range 1–50.

Compared with the performance of BATS-Pro-0 in Figure 3.7, we see that the advanced
recoding techniques introduced in this chapter significantly improve the normalized expected
rank at the destination node, especially for small qm and M . For example, when qm D 2, M D 8,
and l D 50, NR� is more than 200% better than the performance of BATS-Pro-0.

Similar to the special case illustrated in Theorem 4.8, NR� decreases slowly with l , roughly
in proportion to 1= ln l . For l D 1,000, NR� is larger than 0:4 (half of the network capacity) for
many choices of qm and M (e.g., qm D 2 and M D 16). These results show that BATS codes
can be used for very long networks.

Now let us explain why the curve for M D 1 and q D 28 is approximately piecewise linear.
We have observed that QM � takes constant values piecewisely. Suppose that QM � D c for l 2

Œl0; l1�. Since q D 28 is large, we can approximate NR� in this case by (4.8) with c in place of QM ,
i.e., NR� � .1 � �c/l=c � .1 � l�c/=c, where the latter is a linear function for l 2 Œl0; l1�.



4.3. NUMBEROFRECODEDPACKETS 59

100

80

60

40

10

0
0 10 20 30 40 50

Network Length (Ɩ )

0 200 400 600 800 1,000
Network Length (Ɩ )

M
*
 f

o
r 

sy
st

em
at

ic
 r

ec
o
d
in

g
qm = 2, M = 64

qm = 2, M = 32

qm = 2, M = 16

qm = 2, M = 8

qm = 2, M = 4

qm = 2, M = 2

qm = 2, M = 1

qm = 28, M = 64

qm = 28, M = 32

qm = 28, M = 16

qm = 28, M = 8

qm = 28, M = 4

qm = 28, M = 2

qm = 28, M = 1

qm = 2, M = 64

qm = 2, M = 32

qm = 2, M = 16

qm = 2, M = 8

qm = 2, M = 4

qm = 2, M = 2

qm = 2, M = 1

qm = 28, M = 64

qm = 28, M = 32

qm = 28, M = 16

qm = 28, M = 8

qm = 28, M = 4

qm = 28, M = 2

qm = 28, M = 1

~

100

80

60

40

10

0

M
*
 f

o
r 

sy
st

em
at

ic
 r

ec
o
d
in

g
~

(a) Ɩ = 1,…, 50

(b) Ɩ = 1,…, 1,000

Figure 4.1: The optimizer of (4.7) with systematic recoding for line networks with � D 0:2.
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Figure 4.2: The optimal value of (4.7) with systematic recoding for line networks with � D 0:2.
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NR� and QM � for different values of �

We evaluate NR� and QM � for different values of �. Here we use l D 20; 80, M D 16; 32 and
qm D 2; 256. For each combination of these parameters, we calculate NR� and QM � for � D

0:1; 0:2; : : : ; 0:9 in Table 4.2.
The first column in both tables give the value of 1 � �, which is the network capacity

without any network storage and computation constraints, and hence an upper bound on NR�.
When l D 20, qm D 2, and M D 32, NR� is at least 0:7.1 � �/ for 0:1 � � � 0:9. These results
show that BATS codes with the binary field can be used for a wide range of packet loss rate.

Table 4.2: NR� and QM � for different values of �

(a) Ɩ = 20, M = 16, 32

1 – ϵ

qm = 2, M = 16 qm = 2, M = 32 qm = 28, M = 16 qm = 28, M = 32

R* M* R* M* R* M* R* M*

0.9 0.6728 21 0.7589 38 0.7576 20 0.8005 38

0.8 0.568 25 0.6524 44 0.6335 23 0.6813 44

0.7 0.4802 29 0.556 52 0.529 27 0.5767 52

0.6 0.3998 35 0.4656 62 0.4367 33 0.4809 61

0.5 0.3246 43 0.38 76 0.3519 41 0.3913 75

0.4 0.2535 55 0.2982 96 0.2733 52 0.3064 95

0.3 0.1859 75 0.2197 130 0.1995 71 0.2253 129

0.2 0.1214 114 0.144 198 0.1298 109 0.1475 197

0.1 0.0595 232 0.0709 402 0.0634 222 0.0725 399

(b) Ɩ = 80, M = 16, 32

1 – ϵ

qm = 2, M = 16 qm = 2, M = 32 qm = 28, M = 16 qm = 28, M = 32

R* M* R* M* R* M* R* M*

0.9 0.6047 24 0.7138 41 0.7152 21 0.77 40

0.8 0.5105 28 0.6113 48 0.5893 25 0.6483 47

0.7 0.4301 33 0.5187 57 0.4877 30 0.5446 55

0.6 0.3571 40 0.4326 68 0.3996 37 0.4514 67

0.5 0.289 50 0.3516 84 0.3201 46 0.3654 82

0.4 0.2251 64 0.275 107 0.2473 59 0.2848 105

0.3 0.1646 87 0.2019 145 0.1797 81 0.2086 143

0.2 0.1072 134 0.132 222 0.1164 125 0.1361 218

0.1 0.0524 273 0.0648 452 0.0567 257 0.0667 444

~ ~ ~

~

~

~ ~~
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4.3.3 OPTIMIZATIONUSINGLOCAL INFORMATION
The optimization (4.7) maximizes the normalized expected rank at the destination node, but
it requires the knowledge of the packet loss rate of all the network links. So the optimization
(4.7) is also called the global optimization. In a large distributed wireless networks, e.g., a line
network with more than 10 hops, it is difficult to implement this optimization exactly due to
the collection of all the packet loss rates and the distribution of the optimization result.

For a network node, we call the status information of its adjacent network nodes and
links the local information. In other words, only single-hop transmissions are needed for the
network node to obtain the local information. Here, we introduce an approach that uses only
the local information to optimize the number of batches for recoding, which is called the local
optimization. Specifically, we assume node Rk knows

• the rank distribution �k which can be obtained from the batches received at Rk ,

• Mk�1, the number of recoded packets of a batch transmitted at node Rk�1, and

• �kC1, the packet loss rate on link .Rk; RkC1/, which can be known from node RkC1.

We use the convention that M�1 D 0. The recoding parameters (e.g., l , qm, and M ) are known
by all the nodes.

For 0 � k < l , node Rk first solves the following optimization

max
Mk

EŒ�k.PkC1/l�k�

Mk

; (4.10)

where the nominator of the objective function is the expected rank at the destination node under
the assumption that the packet loss rates on all link .Rj ; Rj C1/, j D k; k C 1; : : : ; l � 1 are �kC1.
Node Rk can solve the above optimization using only the local information.

Let M �
k

be the optimal value of (4.10). Instead of using M �
k

as the value of Mk , we set
Mk as maxfM �

k
; Mk�1g, which does not change the number of network uses maxl

kD0
Mk , but

can potentially increase the expected rank at the destination node.
We use an experiment to compare the performance of the local and global optimizations.

For a line network of l hops, we uniformly at random pick �k , k D 1; : : : ; l in the range Œ0; 0:4�

independently. For these randomly generated packet loss rates, we optimize the number of re-
coded packets using both the global and the local optimizations.

• For the global optimization, we calculate the optimal value NR� of (4.7), which is the nor-
malized expected rank at the destination node.

• For the local optimization, we calculate the normalized expected rank at the destination
node NRlocal using the following three steps:

1. Obtain the optimizer M �
k

of (4.10) for k D 0; 1; : : : ; l � 1.
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2. Set M0 D M �

0 , Mk D maxfM �
k

; Mk�1g for k D 1; 2; : : : ; l � 1.

3. Calculate the corresponding normalized expected rank at the sink NRlocal.

For each set of qm, M and l values, we repeat the above experiment 500 times and draw the
histogram of 1 � . NRlocal= NR�/ in Figure 4.3, where we see that differences between NRlocal and NR�

are less than 10% for almost all experiments.
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(a) qm = 2, M = 16, Ɩ = 200
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(c) qm = 256, M = 16, Ɩ = 200
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(b) qm = 2, M = 32, Ɩ = 40

150

100

50

0
0 1 2 3 4 5 6 7 8 9 10 11

N
u
m

b
er

 o
f 

O
cc

u
rr

en
ce

s

∙10–2

(d) qm = 256, M = 32, Ɩ = 40

Figure 4.3: Histograms of 1 � NRlocal= NR� for 500 instances of the network.
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4.4 ADAPTIVERECODING
In the previous discussion of recoding, the same number of recoded packets is transmitted for
all the batches, no matter how many packets are received for a batch. Intuitively, we should
transmit more packets for a batch with a higher rank because compared with a batch with a lower
rank, the former contains more useful information for decoding. This idea has been justified and
implemented in [80, 105], where the technique is called adaptive recoding. From the numerical
results in [80], we see that adaptive recoding can improve the performance significantly when
the batch size is relative small (e.g., M � 16).

The batches received at a network node u may have different ranks. An adaptive recoding
scheme transmits M 0.r/ recoded packets for a batch when its rank is r . Suppose the (empir-
ical) rank distribution of the batches received at node u is � . The average number of packet
transmitted at node u is

NM 0
D

MX
rD0

M 0.r/�Œr�;

and the rank distribution of the batches received at node uC is �P, where P is the rank transition
matrix for the adaptive recoding.

The rank transition matrices for adaptive recoding can be characterized similar to these
in Lemma 4.2 and Lemma 4.5. Denote by PRA and PSA the rank transition matrices from
node u to node uC for RLNC and systematic recoding, respectively, where the recoding scheme
transmits M 0.r/ recoded packets for a batch when its rank is r .

Lemma 4.9 For 0 � j � i � M , PRAŒi; j � D
PM 0.i/

kDj

�
M 0.i/

k

�
.1 � �/k�M 0.i/�k�

i;k
j .qm/.

Lemma 4.10 For 0 � j < i � M ,

PSAŒi; j � D

(PM 0.i/
rDj

Pj

aD0_.rCi�M 0.i//

�
M 0.i/�i

r�a

��
i
a

�
.1 � �/r�M 0.i/�r�

i�a;r�a
j �a .qm/ i < M 0.i/;�

M 0.i/
j

�
.1 � �/j �M 0.i/�j i � M 0.i/:

Suppose that node Rk in a line network of length l applies the function Mk.r/ to deter-
mine the number of recoding packets. We can use the following global optimization approach
similar to (4.7) to design M 0.r/:

max
QM;Mk.r/;rD0;1;:::;M;kD0;1;:::;l�1

EŒ�l �= QM

s.t.
MX

rD0

Mk.r/�kŒr� � QM; k D 0; 1; : : : ; l � 1:
(4.11)

One approach to solve the above optimization has the following steps.
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1. Optimize QM by solving (4.7).

2. Fix the optimized QM in the last step, and for each k in f0; 1; : : : ; l � 1g, solve the following
optimization sequentially

max
Mk.r/;rD0;1;:::;M

�k.PkC1/l�kC1

QM

s.t.
MX

rD0

Mk.r/�kŒr� � QM;

(4.12)

where Pk is the rank transition matrix from node Rk�1 to Rk using adaptive recoding and
�k D �0P1 � � � Pk is determined by the optimizer M �

i .�/, i D 0; 1; : : : ; k � 1 of the first
k optimization. We refer readers to [80, 105] for the numerical approaches to solve the
above optimization efficiently.

It is also possible to modify the above approach to use only the local information by replacing
QM in (4.12) with Mk D maxfM �

k
; Mk�1g, where M �

k
is the optimizer of (4.10).
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C H A P T E R 5

Asymptotic Analysis of BP
Decoding

We have discussed a basic BATS protocol and the design of the inner codes in the last two
chapters. Starting from this chapter, we move on to the design of the outer codes, which are
matrix generalization of fountain codes. In this chapter, we focus on the asymptotic performance
of the outer codes when the number of input packets tends to infinity. We obtain a sufficient
condition for the BP decoder to recover a given fraction of the input packets, which is called the
intermediate performance in the literature of fountain codes [28, 50, 65].

5.1 MAINRESULT
Wefirst present the main analytical result for a generalized BATS code model. Consider a BATS
code with K input symbols and n batches of size M , where the i-th batch has degree dgi , batch
generator matrix Gi and batch transfer matrix Hi . The dgi input packets involved in the i-th
batch, with the index set Ai , are uniformly distributed among all the input packets. The batch
generator matrix Gi is a dgi � M totally random matrix over the base field Fq . The batch transfer
matrix has M rows.

Let D be the maximum degree among all batches. For integers d and r with 1 � d � D

and 0 � r � M , let

�d;r D
jfi 2 f1; 2; : : : ; ng W dgi D d; rk.Hi / D rgj

n
;

the empirical distribution of the batch degree and the transfer matrix rank. We assume that
the empirical distribution converges in probability to a probability distribution … D .…d;r ; 1 �

d � D; 0 � r � M/. Specifically, there exists a function �.n/ such that for all sufficiently large
n, with probability at least 1 � �.n/,

j�d;r � …d;r j D O.n�1=6/; 1 � d � D; 0 � r � M; (5.1)

where limn!1 �.n/ D 0.
Compared with BATS codes described in Chapter 2, some assumptions are relaxed here:

(i) the batch degrees may not be independently chosen according to a degree distribution; and
(ii) the degrees and the transfer matrix ranks can be correlated. For the BATS codes described
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in Chapter 2, i.e., all the degrees are independently chosen according to a degree distribu-
tion .‰1; � � � ; ‰D/ and all the batch transfer matrix ranks are i.i.d. following the distribution
.h0; h1; : : : ; hM /, �d;r converges in probability to …d;r D ‰d hr . Specifically, the following can
be proved by applying Hoeffding’s inequality and the union bound:

Pr
n
j�d;r � ‰d hr j < n�1=6; 1 � d � D; 0 � r � M

o
� 1 � 2MD exp.�2n2=3/:

The BP decoding algorithm of BATS codes BP.n/ provided in Section 2.2 applies to the
generalized version as well. For BP.n/, we are interested in the time when the decoding stops,
which is equal to the number of input packets that are decoded. For example, if BP.n/ stops
at time zero, then no input packets are decoded; if BP.n/ stops at time K, then all the input
packets are decoded. In this chapter, we characterize the ratio of the decoded input packets when
K tends to infinity.

For x 2 Œ0; 1�, define

�.xI …/ D

DX
dD1

MX
rD1

d …d;r

d�1X
j D.d�r/C

 
d � 1

j

!
xj .1 � x/d�1�j �r

d�j ; (5.2)

where .d � r/C D d � r if d � r � 0 and vanishes otherwise, and �r
d�j

is defined in (2.3) as

�m
r D

�
.1 � q�m/.1 � q�mC1/ � � � .1 � q�mCr�1/ r > 0;

1 r D 0:
(5.3)

Lemma 5.1 We can rewrite

�.xI …/ D

DX
dD1

d

MX
rD1

Id�r;r .x/

MX
kDr

�k
r

qk�r
…d;k (5.4)

D

MX
rD1

DX
dDrC1

d Id�r;r .x/

MX
kDr

�k
r

qk�r
…d;k C

MX
rD1

rX
dD1

d

MX
kDr

�k
r

qk�r
…d;k; (5.5)

where

Id�r;r.x/ D

d�1X
j D.d�r/C

 
d � 1

j

!
xj .1 � x/d�1�j (5.6)

which is called the regularized incomplete beta function.

Proof. First, we have

DX
dD1

d

MX
rD1

Id�r;r .x/

MX
kDr

�k
r

qk�r
…d;k D

DX
dD1

MX
kD1

d…d;k

kX
rD1

Id�r;r .x/
�k

r

qk�r
: (5.7)
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Then, we can write

kX
rD1

Id�r;r .x/
�k

r

qk�r
D

kX
rD1

d�1X
j D.d�r/C

 
d � 1

j

!
xj .1 � x/d�1�j �k

r

qk�r

D

d�1X
j D.d�1/C

 
d � 1

j

!
xj .1 � x/d�1�j

kX
rDd�j

�k
r

qk�r

D

d�1X
j D.d�1/C

 
d � 1

j

!
xj .1 � x/d�1�j �k

d�j ; (5.8)

where the last equality is obtained by
Pk

rDs
�k

r

qk�r D �k
s . Substituting (5.8) into (5.7), we obtain

(5.4). Lastly, (5.5) is obained by noting that when d � r , Id�r;r.x/ D 1. �

Theorem5.2 Fix integers D > 0, M > 0, real numbers � > 0 and 0 < � < 1. Consider a sequence
of BATS codes with K input packets and n D dK=�e batches of batch size M , where the empirical
distribution of the batch degree and the transfermatrix rank of all batches converges to… D .…d;r ; d D

1; : : : ; D; r D 0; 1; : : : ; M/ such that

�.xI …/ C � ln.1 � x/ > 0; 0 � x � �: (5.9)

Then BP.n/ can recover at least �K input packets with a high probability.

In the next chapter, we will use (5.9) to study the achievable rates of BP.n/ and the de-
sign of the outer codes. Readers may skip the remainder of this chapter if the derivation of
Theorem 5.2 is not of primary interest.

5.2 ASYMPTOTICANALYSIS: DIFFERENTIALEQUATION
APPROACH

In this section, we study the following question: When BP.n/ stops, how much input packets
would have been decoded in the case that n is sufficiently large? Some existing methods for
analyzing BP decoding of erasure codes can be modified to analyze BP decoding of BATS
codes. In this section, we adopt the differential equation approach [87] that has been used to
analyze Tornado codes [42] (see also [62] for an analysis of LDPC codes over erasure channel).
Note that many technical details have to be properly considered in order to apply the differential
equation approach. These will be elaborated in this section. This appraoch was published in [97].
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5.2.1 RANDOMDECODINGGRAPH
The BP decoding process is better described using a random bipartite graph, called the decoding
graph. The decoding graph T has K variable nodes and n check nodes, where the i-th variable
node corresponds to the i-th input packet and the j -th check node corresponds to the j -th
batch. We equate a variable node with an input packet, and a check node with a batch. Check
node j is connects to dgj variable nodes chosen uniformly at random.Denote by BATS.K; n; …/

the random vector ..dgi ; Gi ; Hi /
n
iD1;T /. See an example of T in Figure 5.1, which is the same

as the encoding graph in Figure 2.1 except that the two stages of the encoding are combined
together.

Gi Hi Gj Hj

bk

Figure 5.1: A decoding graph. Nodes on the first row are the variable nodes representing the
input packets. Nodes on the second row are the check nodes representing the batches.

A check node i is decodable if dgi D rk.GiHi /, where the latter is called the effective rank
of a batch/check node. In other words, a check node is decodable if its degree and its effective
rank are the same. An edge in T is said to be of degree d and effective rank r if it is connected
to a check node with degree d and effective rank r . Let Ed;r be the number of edges of degree
d and effective rank r . Note that Ed;r=d gives the number of check nodes with degree d and
effective rank r .

Recall
�d;k

r D
�d

r �k
r

�r
r q.d�r/.k�r/

;

which is the probability that a totally random d � k matrix over Fq has rank r . Define

�d;r D d

MX
kDr

�d;k
r …d;k : (5.10)

The following lemma characterizes the initial status of the decoding graph.

Lemma 5.3 With probability at least 1 � �.n/ � 2M 2D exp.�2n2=3/,ˇ̌̌̌
Ed;r

n
� �d;r

ˇ̌̌̌
D O.n�1=6/; 1 � r � M; r � d � D: (5.11)
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Proof. We study the probability of event (5.11) under the condition (5.1), which holds with
probability at least 1 � �.n/. With an abuse of notation, we treat �d;k as an instance satisfying
(5.1) in the rest of this proof, i.e., the decoding graph has n�d;k check nodes with degree d and
transfer matrix rank k.

Using the property of a totally random matrix and some counting techniques in projective
space (see Andrews [4] and Gadouleau and Yan [16]), we have

Pr frk.GiHi / D r jdgi D d; rk.Hi / D kg D �d;k
r : (5.12)

In other words, for a batch with degree d and transfer matrix rank k, the batch has an effective
rank r (r � k; r � d ) with probability �

d;k
r . Denote by Xd;k;r the number of check nodes with

degree d , transfer matrix rank k, and effective rank r . We know that Ed;r D d
P

k�r Xd;k;r .
Applying Hoeffding’s inequality, with probability at least 1 � 2M 2D exp.�2n2=3/,ˇ̌̌̌

Xd;k;r

n�d;k

� �d;k
r

ˇ̌̌̌
< n�1=6; 1 � d � D; 0 � k � M; 0 � r � minfd; rg;

which implies ˇ̌̌̌
ˇEd;r

n
� d

MX
kDr

�d;k�d;k
r

ˇ̌̌̌
ˇ D O.n�1=6/: (5.13)

Moreover, ˇ̌̌̌
Ed;r

n
� �d;r

ˇ̌̌̌
D

ˇ̌̌̌
ˇEd;r

n
� d

MX
kDr

�d;k�d;k
r C d

MX
kDr

�d;k�d;k
r � �d;r

ˇ̌̌̌
ˇ

�

ˇ̌̌̌
ˇEd;r

n
� d

MX
kDr

�d;k�d;k
r

ˇ̌̌̌
ˇC d

MX
kDr

ˇ̌
�d;k � …d;r

ˇ̌
�d;k

r :

By (5.13) and (5.1), we have ˇ̌̌̌
Ed;r

n
� �d;r

ˇ̌̌̌
D O.n�1=6/

with probability at least 1 � 2M 2D exp.�2n2=3/. The proof is completed by subtracting the
probability that condition (5.1) does not hold. �

5.2.2 DENSITY EVOLUTION
Compared with the analysis of fountain codes, a batch has a relatively complex decoding criteria
that involves the uniquely decodability of a linear equation system. In addition to the evolution
of the degrees of the check nodes, the evolution of the effective ranks of the check nodes also
needs to be tracked in the decoding analysis.

Consider the evolution of BATS.K; n; …/ during the decoding process using decoder
BP.n/, where time t starts at 0 and increases by 1 for each variable node removed by the decoder.
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Suppose that in graph T , all the edges connected to the decoded input packets are deleted, and
denote the residual graph at time t by T .t/. As we discussed in Section 2.3.1, at time t � 0

the generator matrix of the i-th batch becomes G.t/
i and the remaining contributors of the i-th

batch form the index set A
.t/
i . At time t � 0, a batch is decodable if its degree jA

.t/
i j is equal to

its effective rank rk.G.t/
i Hi /. For t � 0, 1 � r � M and r � d � D, let E

.t/

d;r
denote the number

of edges in T .t/ of degree d and effective rank r , where E
.0/

d;r
D Ed;r . Note that BP.n/ will stop

at the first time t such that
PM

rD1 E
.t/
r;r D 0.

Upon removing a neighboring variable node of a check node with degree d and rank r , the
degree of the check node will change to d � 1. The effective rank of the check node may remain
unchanged or may change to r � 1. Regarding a degree - effective-rank pair as a state, the state
transition of a check node during the decoding process is illustrated in Figure 5.2, where the
transition probability is characterized in the following lemma. Define

˛d;r D
1 � q�dCr

1 � q�d
;

and
N̨d;r D 1 � ˛d;r :

d = 1

r = 1

2

3

4

5

2 3 4 5 6 7 8

α6, 3

α6, 3

α6, 4

Figure 5.2: The state transition diagram for M D 5 and D D 8. Each node in the graph rep-
resents a degree - effective-rank pair. In each decoding step, if the check node connects to the
decoded variable node, its state changes according to the direction of the outgoing edges of its
current state. The label on an edge shows the probability that a direction is chosen.

Lemma 5.4 For any check node i , 1 � r � M and r � d � D,

Pr
n
rk.G.tC1/

i Hi / D r
ˇ̌̌
rk.G.t/

i Hi / D r; jA
.tC1/
i j D d � 1; jA

.t/
i j D d

o
D ˛d;r ;

Pr
n
rk.G.tC1/

i Hi / D r � 1
ˇ̌̌
rk.G.t/

i Hi / D r; jA
.tC1/
i j D d � 1; jA

.t/
i j D d

o
D N̨d;r :
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Proof. We omit the index i in the proof to simplify the notation. By (5.12) and the fact that Gi

is totally random, we have for k � r ,

Pr
n
rk.G.t/H/ D r

ˇ̌
rk.G.tC1/H/ D r; jA.tC1/

j D d � 1; jA.t/
j D d; rk.H/ D k

o
D qr�k;

Pr
n
rk.G.tC1/H/ D r

ˇ̌
jA.tC1/

j D d � 1; jA.t/
j D d; rk.H/ D k

o
D �d�1;k

r ;

Pr
n
rk.G.t/H/ D r

ˇ̌
jA.tC1/

j D d � 1; jA.t/
j D d; rk.H/ D k

o
D �d;k

r :

Hence,

Pr
n
rk.G.tC1/H/ D r

ˇ̌̌
rk.G.t/H/ D r; jA.tC1/

j D d � 1; jA.t/
j D d; rk.H/ D k

o
D qr�k �

d�1;k
r

�
d;k
r

D
1 � q�dCr

1 � q�d
:

The proof is completed by multiplying

Pr
n
rk.H/ D k

ˇ̌
rk.G.t/H/ D r; jA.tC1/

j D d � 1; jA.t/
j D d

o
on both sides of the above equality and taking summation over all k � r . �

Define �
.0/

d;r
D �d;r and for 0 � i < d ,

�
.iC1/

d;r
D ˛d�i;r�

.i/

d;r
C N̨d�i;rC1�

.i/

d;rC1
: (5.14)

The following lemma can readily be proved by induction.

Lemma 5.5 For 0 � t � d ,

�
.t/

d;r
D d

MX
kDr

�d�t;k
r …d;k :

5.2.3 EXPECTEDDENSITY EVOLUTION
Assume that the decoding process has not stopped. At time t , we have K � t variable nodes left
in T .t/, and an edge with degree equal to the rank is uniformly chosen to be removed. Let

NE.t/ , .E
.t/

d;r
W 1 � r � M; r � d � D/:

The random process f NE.t/g is a Markov chain, which suggests a straightforward approach to
compute all the transition probabilities in the Markov chain. However, this approach leads to a
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complicated formula. Instead of taking this approach, we work out the expected change E
.tC1/

d;r
�

E
.t/

d;r
explicitly for all t � 0. Let

E
.t/
0 D

MX
rD1

E.t/
r;r :

We do not need to study the behavior of E
.t/
r;r for individual values of r since E

.t/
0 is sufficient to

determine when the decoding process stops. Specifically, the decoding process stops as soon as
E

.t/
0 becomes zero.

We care about when E
.t/
0 goes to zero for the first time t . The evolution of E

.t/
0 depends

on that of E
.t/

d;r
, 1 � r � M , and r < d � D.

Lemma 5.6 For any constant c 2 .0; 1/, for t � cK and E
.t/
0 > 0,

E
h
E

.tC1/

d;r
� E

.t/

d;r

ˇ̌̌
NE.t/

i
D

�
˛dC1;rE

.t/

dC1;r
C N̨dC1;rC1E

.t/

dC1;rC1
� E

.t/

d;r

� d

K � t
; 1 � r � M; r � d � D; (5.15)

and

E
h
E

.tC1/
0 � E

.t/
0

ˇ̌̌
NE.t/

i
D

P
r r˛rC1;rE

.t/
rC1;r

K � t
�

E
.t/
0

K � t
� 1 C O.1=K/: (5.16)

Proof. Fix a time t � 0. With an abuse of notation, we treat NE.0/; : : : ; NE.t/ as instances in the
proof, i.e., the values of these random vectors are fixed. Let .U; V / be the edge chosen to be
removed at time t , where V is the variable node and U is the check node, according decoder
BP.n/. Note that V is uniformly distributed among all variable nodes and U must be a check
node with degree equal to the rank at time t . See an illustration in Figure 5.3.

V

U

Figure 5.3: A decoding graph. Edge .U; V / is to be removed at time t .

Let Nd;r be the number of check nodes which has degree d and effective rank r at time t

and has degree d � 1 at time t C 1. Let N C

d;r
(resp. N �

d;r
) be the number of check nodes which
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has degree d and effective rank r at time t and has degree d � 1 and effective rank r (resp. r � 1)
at time t C 1. Clearly, N C

d;r
C N �

d;r
D Nd;r . The difference E

.tC1/

d;r
� E

.t/

d;r
can then be expressed

as
E

.tC1/

d;r
� E

.t/

d;r
D d.N C

dC1;r
C N �

dC1;rC1 � Nd;r/: (5.17)
The probability that a check node with degree d and effective rank r , d > r , connects to

the variable node V at time t is d=.K � t /. Therefore, when d > r ,

Nd;r � Binom
 

E
.t/

d;r

d
;

d

K � t

!
:

Aswe characterize in Lemma 5.4, for a check node with degree d and effective rank r connecting
to the variable node V at time t , its effective rank will become r (resp. r � 1) with probability
˛d;r (resp. N̨d;r ) at time t C 1. So when d > r ,

N C

d;r
� Binom

 
E

.t/

d;r

d
; ˛d;r

d

K � t

!
;

N �
d;r � Binom

 
E

.t/

d;r

d
; N̨d;r

d

K � t

!
:

The expectation in (5.15) is obtained by taking expectation on (5.17).
To verify (5.16), note that N C

r;r D 0 and hence N �
r;r D Nr;r . Then we have

E
.tC1/
0 � E

.t/
0 D

X
r

�
E.tC1/

r;r � E.t/
r;r

�
D
X

r

rN C
rC1;r �

X
r

Nr;r : (5.18)

For a check node with degree r and effective rank r , with probability r=E
.t/
0 it is U , and hence

is connected to V , otherwise, with probability r=.K � t/ it is connected to V . Therefore,

Nr;r � Binom
 

E
.t/
r;r

r
;

r

E
.t/
0

C

 
1 �

r

E
.t/
0

!
r

K � t

!
:

Taking expectation on both sides of (5.18), we have

E
h
E

.tC1/
0 � E

.t/
0 j NE.t/

i
D

X
r

r˛rC1;r

E
.t/
rC1;r

K � t
�
X

r

 
E

.t/
r;r

E
.t/
0

C

 
1 �

r

E
.t/
0

!
E

.t/
r;r

K � t

!
D

X
r

r˛rC1;r

E
.t/
rC1;r

K � t
�

E
.t/
0

K � t
� 1 C

X
r

r

E
.t/
0

E
.t/
r;r

K � t
:

The expectation in (5.16) is obtained by
P

r
r

E
.t/
0

E
.t/
r;r

K�t
< M 2

K.1�c/
since t � cK. �
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5.2.4 SUFFICIENTANDNECESSARYCONDITIONS
The expected changes in Lemma 5.6 can be approximated by the solution of a differential equa-
tion. Consider the system of differential equations

d �d;r.�/

d �
D

�
˛dC1;r�dC1;r.�/ C N̨dC1;rC1�dC1;rC1.�/ � �d;r.�/

� d

� � �
;

1 � r � M; r < d � D; (5.19)
d �0.�/

d �
D

PD�1
rD1 r˛rC1;r�rC1;r.�/ � �0.�/

� � �
� 1 (5.20)

with initial values �d;r.0/ D �d;r and �0.0/ D
P

r �r;r , where � D K=n is the design rate of the
BATS code.

We can obtain some intuition about how the system of differential equations is related to
the problem of our interest. Substitute E

.t/

d;r
and E

.t/
0 with n�d;r.t=n/ and n�0.t=n/, respectively,

in (5.15) and (5.16). Defining � D t=n and letting n ! 1, we obtain the system of differential
equations in (5.19) and (5.20). The expectation operations are ignored because �d;r.�/ and �0.�/

are deterministic functions. Intuitively, E
.t/

d;r
and E

.t/
0 , although random, behave like determin-

istic functions n�d;r.t=n/ and n�0.t=n/ when n is large.
The above intuition can be made rigorous based on a general theorem by [86, 87]. Due

to the different problem model, we provide a modified version, Theorem A.1 in Appendix A,
which is different from the ones used in [42, 62].

The system of differential equations in (5.19) and (5.20) can be solved explicitly (see Ap-
pendix A.3). In particular, the solution for �0.�/ is

�0.�/ D

�
1 �

�

�

� MX
rD1

˛rC1;r

DX
dDrC1

�
.d�r�1/

d;r
Id�r;r

� �

�

�
C

MX
rD1

�r;r C � ln.1 � �=�/

!
;

where Id�r;r is defined in (5.6). The above formula of �0.�/ can be simplified by substituting the
expressions of ˛rC1;r , �

.d�r�1/

d;r
, and �r;r as

�0.�/ D

�
1 �

�

�

� MX
rD1

DX
dD1

d Id�r;r

� �

�

� MX
kDr

�k
r

qk�r
…d;k C � ln.1 � �=�/

!
: (5.21)

For � 2 .0; 1/, the following theorem shows that if �0.�/ > 0 for � 2 Œ0; ���, then the decoding
does not stop until t > �K with high probability, and E

.t/

d;r
and E

.t/
0 can be approximated by

n�d;r.t=n/ and n�0.t=n/, respectively.

Theorem 5.7 Consider a sequence of decoding graphs BATS.K; n; ‰; h/, n D 1; 2; : : : with fixed
� D K=n. For � 2 .0; 1/,
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(i) if �0.�/ > 0 for � 2 Œ0; ���, then for sufficiently large K, with probability

1 � O.n7=24 exp.�n1=8// � �.n/, the decoding terminates with at least �K variable
nodes decoded, and

jE
.t/

d;r
� n�d;r.t=n/j D O.n5=6/; 1 � r � M; r < d � M;

jE
.t/
0 � n�0.t=n/j D O.n5=6/

uniformly for t 2 Œ0; �K�; and

(ii) if �0.�/ < 0 for some � 2 Œ0; ���, then for sufficiently large K, with probability 1 �

O.n7=24 exp.�n1=8// � �.n/, the decoding terminates before �K variable nodes are decoded.

See Appendix A.2 for the proof of the above theorem.

5.3 TREEANALYSISOFBATSCODES
We provide an analysis of the BP decoding performance of the generalized BATS codes us-
ing a tree-based approach, which extends the tree analysis proposed in [41]. Compared with the
differential equation approach, the tree-based approach is more intuitive: the “strange” formula
obtained previously by solving a differential equation now has a simple interpretation. This anal-
ysis approach was published in [98].

5.3.1 ANEXTENSIONOFAND-ORTREEANALYSIS
We first discuss an extension of the And-Or tree analysis [41]. For an integer ` � 0, define a
random tree �` formed by variable nodes and check nodes with ` C 1 levels as follows: The root
of the tree is at level 0 (the highest) and the leaves of tree is at level ` (the lowest). Each node at
an even level is a variable node, and each node at an odd level is a check node. For i � 1, a non-
leaf variable node has i � 1 children at the next lower level with probability ˛i , i.e., ˛i � 0 andP1

iD1 ˛i D 1. For d � 1 and r � 0, a check node has degree d and transfer matrix rank r with
probability ˇd;r , i.e., ˇd;r � 0 and

P1

dD1

P1

rD0 ˇd;r D 1. A non-leaf check node with degree d

has d � 1 children at the next lower level. Nodes at level ` have no children. An instance of �3

is illustrated in Figure 5.4.
Same as the check nodes in the decoding graph T of a BATS code, a check node in �`

also associates with the variables of a batch. The difference is that the adjacent variable nodes of a
check node are not chosen uniformly at random among all the variable nodes. The BP decoding
algorithm of BATS codes can be applied on �` as well. Note that �` does not degenerate to
the And-Or tree discussed in [41] even when all the batches are of size 1. We are interested in
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Figure 5.4: An instance of �3 with ˛2 D 0:5, ˛3 D 0:5, ˇ2;2 D 0:25, ˇ3;2 D 0:5, and ˇ4;3 D 0:25.
The transfer matrix ranks are not denoted in the figure.

the probability that the root of �` can be recovered when the BP decoding of BATS codes is
applied.

Lemma 5.8 For ` � 1, let x` be the probability that the root of �2`�1 can be recovered by applying
the BP decoding of BATS codes. Then for i D 1; : : : ; `

yi D

1X
dD1

1X
rD1

ˇd;r

d�1X
sD.d�r/C

 
d � 1

s

!
xs

i�1.1 � xi�1/d�1�s�r
d�s;

xi D 1 �

1X
kD1

˛k.1 � yi /
k�1;

where x0 D 0 and �r
d�s

is defined in (5.3).

Proof. We claim that for i D 1; : : : ; `,

1. xi is the probability that a variable node v at level 2.` � i/ can be recovered by applying the
BP decoding of BATS codes on the subtree of �2`�1 formed by v and all its descendants;
and

2. yi is the probability that a check node c at level 2.` � i/ C 1 is decodable by applying the
BP decoding of BATS codes on the subtree of �2`�1 formed by c and all its descendants.

We prove the claim by induction on i . First, consider a check node c at level 2` � 1 with degree
d and transfer matrix rank r . Since c does not have a child, it is decodable with probability �r

d

when 1 � d � r and zero otherwise. Thus, the claim for y1 is proved.
Assume that the claim holds for yi for some 1 � i � `. Consider the subtree formed by

a variable node v at level 2.` � i/ and all its descendants. Node v can be recovered if at least
one of its children check node is decodable. By the induction hypothesis, each children of v is
decodable with probability yi independently. Hence, the claim for xi holds.
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Assume that the claim holds for yi for some 1 � i < `. Fix a check node c at level

2.` � i/ � 1 with degree d � 1 and transfer matrix rank r � 1. Consider the BP decoding on
the subtree formed by node c and all its descendants. Note that if r D 0, the node c cannot
be decodable since d � 1. Consider r � 1. The probability that node c is decodable when s

of its d � 1 children are recovered is �r
d�s

, where .d � r/C � s � d � 1. Since each child of
v is recovered with probability xi independently, the probability that node c is decodable isPd�1

sD.d�r/C

�
d�1

s

�
xs

i .1 � xi /
d�1�s�r

d�s
: The claim for yiC1 is proved by considering the proba-

bility of node c which has degree d and transfer matrix rank r . �

5.3.2 TREEANALYSISOFBPDECODING
For the convenience of the tree-based analysis, we give a different version of the BP.n/ decoder,
called the BP0.n/ decoder. The input of BP0.n/ is the sequence .Yi ; GiHi /, i D 1 : : : ; n. The
decoder also knows the index set of the input packets involved in each batch.The BP0.n/ decoder
includes multiple iterations. In the first iteration, all the decodable batches are decoded (by
solving the associated linear system of equations (2.1)), and the input packets involved in these
decodable batches are recovered. In each of the following iterations, undecoded batches are
first updated: For each input packet involved in the i-th batch, if this input packet has already
been recovered, its value is substituted into (2.1) and the degree of the batch is reduced by one.
Then the batches which become decodable after the updating are decoded, and the input packets
involved in these decodable batches are recovered. As we have discussed in Section 2.3.5, BP0.n/

and BP.n/ must stop with the same subset of input packets recovered.

Theorem 5.9 Fix an integer D > 0, real numbers � > 0 and 0 < � < 1. Consider a sequence of
BATS codes with K input packets and n D dK=�e batches, where the empirical distribution of the
batch degree and the transfer matrix rank of all batches converges to … such that

�.xI …/ C � ln.1 � x/ > 0; 0 � x � �: (5.22)

Then, for all sufficiently large K, BP0.n/ can recover at least �K input packets with probability at least
1 � exp.�cK/, where c has a value independent of K.

We now prove Theorem 5.9. The structure of the proof is similar to the structure of tree
analysis in the existing literature. First, we define a random tree and prove that the subgraph
expanded from each variable node in the decoding graph T including all the nodes within its `

neighborhood is a tree with a sufficiently large probability. Then, we bound the probability that
a variable node is recoverable after ` iterations of the BP decoding, in terms of the probability
that the root of the corresponding random tree is decodable. Lastly, we bound the number of
variable node that can be recovered using a martingale argument. Since some techniques are
similar to the ones used for LT codes [50] and LDPC codes [43], we omit these details and
refer to the corresponding papers.
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Let N…deg D
P

d;r d…d;r and � D N…deg=R. For ` � 0, define a random tree T �
`

in the same
way as �` with the distributions

ˇd;r D

8<:
d…d;r

N…deg
; 1 � d � D; 0 � r � M;

0; otherwise;
(5.23)

and

˛k D

(
1

1�� Nk

�k�1e��

.k�1/Š
; k D 1; : : : ; Nk;

0; otherwise;
(5.24)

where Nk > 0 is an integer and � Nk D
P1

kD Nk
�ke��

kŠ
. The meanings of these two distributions de-

fined above will be made clear in the proof of the following lemma. Let T �
`

. Nk/ be the set of
possible instances of T �

`
. Note that the elements in T �

`
. Nk/ are trees.

Fix a variable node v in the decoding graph T representing the BATS code with K variable
nodes and n check nodes. For ` � 0, the `-neighborhood of variable node v, denoted by T`.v/,
is the subgraph of G that includes all the nodes with distance less than or equal to ` from node v.
After ` iterations of the BP decoding, whether or not variable node v is recovered is determined
by T2`�1.v/. Since T`.v/ has the same distribution for all variable nodes v, we may also write
T`.v/ as T` when v is implied.

For a fixed ` > 0, the next lemma bounds the probability that T` is a tree of bounded
variable and check node degrees when K is sufficiently large.

Lemma 5.10 Fix integers Nk > 0 and ` � 0. There exists c`; Nk with 0 � c`; Nk � d`=2e.D Nk/b `�1
2 c C

` such that when K is sufficiently large, for any G` 2 T`. Nk/,

PrfT` D G`g � .1 � c`; Nk� Nk/ PrfT �
` D G`g:

Proof. We prove the lemma by induction on `. Both T �
0 and T0 include only one variable node,

so the lemma holds for ` D 0. Suppose the lemma holds for some ` � 0. Fix G`C1 2 T`C1. Nk/,
which by definition is a tree. We have

PrfT`C1 D G`C1g D PrfT`C1 D G`C1jT` D G`g PrfT` D G`g;

where G` is the subgraph of G`C1 obtained by removing the nodes at level ` C 1. By the induc-
tion hypothesis, we have

PrfT` D G`g � PrfT �
` D G`g.1 � c`; Nk� Nk/:

To complete the proof, we bound PrfT`C1 D G`C1jT` D G`g by considering two cases: ` is even
and ` is odd.
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First, consider that ` is odd. Suppose G` has N check nodes at level `, which are also at

level ` of G`C1. Denote by deg.i/ and tmr.i/ the degree and the transfer matrix rank of the i-th
check node at level ` in G`C1, respectively. Let E0 be the event fT` D G`g. For i D 1; : : : ; N ,
let Ei be the event that the i-th check node at level ` of T`C1 has degree deg.i/ and transfer
matrix rank tmr.i/, and the deg.i/ � 1 children are not shared by the first i � 1 check nodes at
level ` of T`C1. Then

PrfT`C1 D G`C1jT` D G`g D PrfEi ; i D 1; : : : ; N jE0g

D

NY
iD1

PrfEi jE0; : : : ; Ei�1g: (5.25)

Note that N and the number of nodes in G` is upper bounded by .D Nk/`=2, which does not
change with K. Since the maximum degree of a batch D is a constant, the probability that the
i-th check nodes at level ` in T`C1 have a child in common with the first i � 1 check nodes is
bounded by O.1=K/, which converges to 0 as K ! 1. Similar to the discussion for LT codes
[50], as K ! 1, PrfEi jE0; : : : ; Ei�1g converges to deg.i/…deg.i/;tmr.i/= N…deg, which is equal
to ˇdeg.i/;tmr.i/ by definition. Hence, as K ! 1,

PrfT`C1 D G`C1jT` D G`g !

NY
iD1

ˇdeg.i/;tmr.i/

D PrfT �
`C1 D G`C1jT �

` D G`g;

where the equality follows from the definition of T �
`C1

with the degree distributions in (5.23) and
(5.24). Thus, for a sufficiently large K, PrfT`C1 D G`C1jT` D G`g � PrfT �

`C1
D G`C1jT �

`
D

G`g.1 � � Nk/.
Second, consider that ` is even. Suppose G` has N variable nodes at level `, which are

also at level ` of G`C1. Denote by ki the number of children check nodes of the i-th variable
node at level ` of G`C1. We have ki < Nk. Similar to the case that ` is odd, let E0 D fT` D G`g,
and for i D 1; : : : ; N , let Ei be the event that the i-th variable node at level ` of T`C1 has ki

children, which are not the children of the first i � 1 variable nodes at level ` of T`C1. With
these events, we have the expression of PrfT`C1 D G`C1jT` D G`g as in (5.25). Similar to LT
codes [50], under the condition that a bounded number of edges in G is fixed, the probability
that the degree of a variable node v is d converges to �d�ae��

.d�a/Š
as K ! 1, where a is the number

of fixed edges incident to v. Therefore, PrfEi jE0; : : : ; Ei�1g !
�ki e��

ki Š
as K ! 1, and hence

PrfT`C1 D G`C1jT` D G`g !

NY
iD1

�ki e��

ki Š
as K ! 1:

On the other hand, we have

PrfT �
`C1 D G`C1jT �

` D G`g D
1

.1 � � Nk/N

NY
iD1

�ki e��

ki Š
:
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Hence, for a sufficiently large K,

PrfT`C1 D G`C1jT` D G`g � .1 � � Nk/N PrfT �
`C1 D G`C1jT �

` D G`g.1 � � Nk/

� .1 � .N C 1/� Nk/ PrfT �
`C1 D G`C1jT �

` D G`g:

The proof is completed by noting that N � .D Nk/`=2. �

5.3.3 RECOVERABLEPROBABILITYOFAVARIABLENODE
Fix ` > 0 and a sufficiently small � > 0. We say T �

2`�1
or a tree in T2`�1. Nk/ is decodable if

its root can be recovered by the BP decoding algorithm. Note that � Nk decreases faster than
any polynomial function of Nk. For a sufficiently large Nk, c`; Nk� Nk < �=4. By Lemma 5.10, for all
sufficiently large K,

PrfT2`�1 D Gg � PrfT �
2`�1 D Gg.1 � �=4/;

and hence

PrfT2`�1 2 T2`�1. Nk/ and is decodableg
�

X
G2T2`�1. Nk/

PrfG is decodableg PrfT2`�1 D Gg

�
X

G2T2`�1. Nk/

PrfG is decodableg PrfT �
2`�1 D Gg .1 � �=4/

� PrfT �
2`�1 is decodableg � �=4: (5.26)

Let xl D PrfT �
2`�1

is decodableg, which can be characterized by Lemma 5.10. For i D 1; 2; : : :,
let

Qxi D 1 � exp.�� Qyi / and Qyi D �. Qxi�1I …/= N…deg;

where Qx0 D 0. We see that x` ! Qx` as Nk ! 1. Thus, for a sufficiently large Nk, x` � Qx` � �=4.
Together with (5.26), we conclude that a variable node v is recoverable and has T2`�1.v/ 2

T2`�1. Nk/ with probability at least Qx` � �=2 for all sufficiently large K.
Let A be the number of variable nodes v that can be recovered by ` iterations of the

BP decoding and have T2`�1.v/ 2 T2`�1. Nk/, where ` has a fixed value (to be determined later)
that does not change with K. We have EŒA� � . Qx` � �=2/K for all sufficiently large K. We use a
standard exposure martingale argument to show that A > �K with high probability. Specifically,
for i D 1; : : : ; n, let Zi be the subgraph formed by the i-th check node and the adjacent variable
nodes. Define Xi D EŒAjZ1; : : : ; Zi �. By definition, Xi is a martingale with X0 D EŒA� and
Xn D A. Since the exposure of a check node will affect the degrees of a constant number of
variable nodes v with T2`�1.v/ 2 T2`�1. Nk/, we have jXi � Xi�1j � c0, a constant that does not
depend on K. Applying the Azuma-Hoeffding Inequality, we have

PrfA � EŒA� � �=2Kg � exp
�

�
�2K

8c02

�
:
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Hence,

PrfA > . Qx` � �/Kg > 1 � exp
�

�
�2K

8c02

�
:

Define f .x/ D 1 � exp.��.xI …/=R/. Then Qxi D f . Qxi�1/. We know that f .x/ is an in-
creasing function for x 2 Œ0; 1� and by (5.22), f .x/ > x for x 2 Œ0; ��. Hence, the sequence
Qxi , i D 0; 1; : : : is increasing and converges to a value �0 larger than �. Therefore, by letting
� D .�0 � �/=2 for a sufficiently large ` (independent of K), we have Qxl � � � � and hence
A � �K with high probability. This completes the proof of Theorem 5.9.
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C H A P T E R 6

Asymptotic Degree
DistributionOptimizations

Following the asymptotic analysis of BP decoding, we now study the achievable rates of BATS
codes and the design of degree distributions based on the sufficient condition in Theorem 5.2.
We assume that the batch degrees and the transfer matrix ranks are “asymptotically indepen-
dent.” Specifically, there exist a degree distribution ‰ D .‰1; � � � ; ‰D/ and a rank distribution
.h0; h1; : : : ; hM / such that …d;r D ‰d hr , which implies that the empirical batch degree distri-
bution converges in probability to ‰ and the empirical transfer matrix rank distribution con-
verges in probability to .h0; h1; : : : ; hM /. The BATS code model described in Chapter 2 satisfies
the above assumption.

6.1 OPTIMIZATIONFOR SINGLERANKDISTRIBUTION
We start with a single rank distribution .h0; h1; : : : ; hM /. Since h0 D 1 �

PM
iD1 hM , we can

alternatively represent a rank distribution .h0; h1; : : : ; hM / as

h D .h1; : : : ; hM /;

where h0 is omitted. With the above notations and assumption, we rewrite �.xI …/ defined in
(5.2) as

�.xI h; ‰/ D

DX
dD1

d‰d

MX
rD1

hr

d�1X
j D.d�r/C

 
d � 1

j

!
xj .1 � x/d�1�j �r

d�j : (6.1)

Following Lemma 5.1, we can equivalently write �.xI h; ‰/ as

�.xI h; ‰/ D

DX
dD1

d‰d

MX
rD1

„r Id�r;r .x/ (6.2)

D

MX
rD1

„r

DX
dDrC1

d‰d Id�r;r .x/ C

MX
rD1

„r

rX
dD1

d‰d ; (6.3)

where Id�r;r is defined in (5.6), and

„r D

MX
kDr

�k
r

qk�r
hk :
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See the meaning of „r in Section 2.6.

For � 2 Œ0; 1/, we say a rate R is �-achievable by BATS codes using BP decoding if for every
� > 0 and every sufficiently large K, there exists a BATS code with K input packets such that
for any n � �K=.R � �/ received batches, BP decoding can recover at least �K input packets
with probability at least 1 � �.

For a given rank distribution h, the following optimization problem maximizes the �-
achievable rate with the degree distribution as the variable:

max
‰;�

�

s.t. �.xI h; ‰/ C � ln.1 � x/ � 0; 0 � x � �;X
d

‰d D 1 and ‰d � 0; d D 1; � � � ; D:
(6.P1)

When the context is clear, we also write �.xI ‰/, �.xI h/ or �.x/ to simplify the notation.
Let O�h, or O� when h is clear from the context, be the optimal value in (6.P1). For a fixed rank
distribution h and a degree distribution ‰ , let O�h;‰ be the largest � such that

�.xI h; ‰/ C � ln.1 � x/ � 0; 0 � x � �:

Lemma6.1 When the empirical rank distribution of the transfer matrices converges in probability to
.h0; h1; : : : ; hM / (in the sense of (5.1)), any rate less than or equal to � O�h;‰ is �-achievable by BATS
codes with degree distribution ‰ using BP decoding.

Proof. By (5.21), we can write

�0.�/ D .1 � �=�/ .�.�=�/ C � ln.1 � �=�// : (6.4)

To show that � O�h;‰ is �-achievable, by Theorem 5.7, we only need to show that there exists a
degree distribution such that for any � > 0,

�.xI ‰/ C . O�h;‰ � �/ ln.1 � x/ > 0; 0 � x � �: (6.5)

Since the proof for � D 0 is trivial, assume that � > 0. By the definition of O�h;‰ , we have

�.xI ‰/ C O�h;‰ ln.1 � x/ � 0; 0 � x � �:

Multiplying by
O�h;‰ ��

O�h;‰

on both sides, we have

O�h;‰ � �

O�h;‰

�.xI ‰/ C . O�h;‰ � �/ ln.1 � x/ � 0; 0 � x � �: (6.6)
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Since �.xI ‰/ > 0 for x > 0, (6.6) implies that ‰ satisfies (6.5) except possibly for x D 0. If
�.0I ‰/ > 0, which implies ‰ satisfies (6.5), we are done.

In the following, we consider the case with �.0I ‰/ D 0. By the definition of � in (6.2),
we have

�.0I ‰/ D

MX
rD1

r‰r

MX
sDr

„s:

Let r� be the largest integer r such that hr > 0. Since �.0I ‰/ D 0, we know that
P

d�r� ‰d D

0. Define a new degree distribution ‰0 by ‰0
d

D ‰d

O�h;‰ ��

O�h;‰

for d > r� and ‰0
d

D � for certain
d � r�, where � > 0 can be determined by the constraint

P
d ‰0

d
D 1. Then we can check that

‰0 satisfies (6.5). �

Since O�h D max‰
O�h;‰ , the above lemma imples that � O�h is �-achievable by BATS codes

using BP decoding. The converse of Lemma 6.1 is that “a rate larger than � O�h is not �-
achievable.” Intuitively, for any � > 0, we cannot have a degree distribution ‰ such that

�.xI h; ‰/ C . O�h C �/ ln.1 � x/ � 0; 0 � x � �:

Thus, with O�h C � in place of � in the expression of �0 in (6.4), for any degree distribution we
have �0.�/ < 0 for some � 2 Œ0; �. O�h C �/�. By Theorem 5.7, for any degree distribution there
exists K0 such that when the number of input packets K � K0, with probability approaching 1
the BATS code cannot recover �K input packets. To prove this converse, however, we need a
uniform bound K0 for all degree distributions such that the second part of Theorem 5.7 holds,
which is difficult to obtain. Instead, we will demonstrate that O�h is close to EŒh�, the capacity of
the underlying linear operator channel (see Section 2.5).

Before analyzing the achievable rate, we determine the maximum degree D, which affects
the encoding/decoding complexity. The next theorem shows that it is optimal to choose D D

dM= N�e � 1, where N� D 1 � �, which implies that the average batch degree is O.M/.

Theorem 6.2 Using D > dM= N�e � 1 does not give a better optimal value in (6.P1), where N� D

1 � �.

Proof. Consider an integer � such that N� �
M

�C1
. Let ‰ be a degree distribution withP

d>� ‰d > 0. Construct a new degree distribution Q‰ with

Q‰d D

8̂<̂
:

‰d if d < �;P
k�� ‰k if d D �;

0 if d > �:
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Write

�.xI Q‰/ � �.xI ‰/ D

1X
dD�C1

‰d

MX
rD1

„r.� I��r;r.x/ � d Id�r;r.x//:

For d � � C 1,

r � 1

d � r
�

M � 1

d � M
<

M

� � M C 1
�

N�

1 � N�
:

So we can apply the properties of the incomplete beta function (Lemma B.2 in Appendix B) to
show that, for any x with 0 < x � �,

d Id�r;r.x/

.d � 1/ Id�1�r;r.x/
<

d

d � 1

�
1 �

N�

r

�
�

d

d � 1

�
1 �

N�

M

�
�

� C 1

�

�
1 �

1

� C 1

�
D 1;

which gives �.xI Q‰/ > �.xI ‰/ for 0 < x � �. This means that using only degree distributions
‰ with

P
d>� ‰d D 0, we can obtain the same optimal value as using all degree distributions.

Therefore, it is sufficient to take the maximum degree D � min
N�� M

�C1
� D dM= N�e � 1. �

To solve (6.P1) numerically, we can relax it as a linear programming by only considering
x in a linearly sampled set of values between 0 and �. Let xi D � i

N
for some integer N . We

relax (6.P1) by considering only x D xi , i D 1; : : : ; N , where N can be chosen to be 100 or even
smaller.

For many cases, we can directly use the degree distribution ‰ obtained by solving (6.P1).
But it is possible that �.0I ‰/ D 0, so that the degree distribution ‰ does not guarantee that
decoding can start. We can then modify ‰ as we do in the proof of Lemma 6.1 by increasing
the probability masses ‰d , d � M by a small amount to make sure that decoding can start.

Remark 6.3 To compare with the degree distribution optimization of LT/Raptor codes, we
see that when M D 1, �.xI h; ‰/ D „1

PD
dD1 d‰d xd�1. The optimization (6.P1) becomes the

optimization of Raptor codes when replacing „1 by h1, which is the case when the generator
matrices with all 1’s are used.Moreover, we only need to consider themaximumdegree d1= N�e � 1

to recover � fraction of the input packets using LT codes.
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6.2 ACHIEVABLERATES
The first upper bound on the optimal value O� of (6.P1) is given by the capacity of LOCs with
receiver side channel state information. When the empirical rank distribution of the transfer
matrices converging to .h0; : : : ; hM /, the capacity is

P
r rhr packets per batch. The BP decod-

ing algorithm recovers at least a fraction � of all the input packets with high probability. So
asymptotically BATS codes under BP decoding can recover at least a fraction � O� of the input
packets. Thus, we have � O� �

P
r rhr .

A tighter upper bound can be obtained by analyzing (6.P1) directly. We first rewrite (6.3)
as

�.xI h; ‰/ D

MX
rD1

„rSr.xI ‰/; (6.7)

where

Sr.xI ‰/ D Sr.x/ ,
DX

dDrC1

d‰d Id�r;r.x/ C

rX
dD1

d‰d : (6.8)

This form of �.xI h; ‰/ will be used in the subsequent proofs.

Theorem 6.4 The optimal value O� of (6.P1) satisfies

� O� �

MX
rD1

r„r :

Remark 6.5 The theorem says that the achievable rates of BP decoding are upper bounded byPM
rD1 r„r . We note, however, that O� can be larger than

PM
rD1 r„r .

Proof. Fix a degree distribution that achieves the optimal value of (6.P1). Using (B.2) in Ap-
pendix B, we have Z 1

0

Sr.x/ d x D

DX
dDrC1

d‰d

Z 1

0

Id�r;r.x/ d x C

rX
dD1

d‰d

D

DX
dDrC1

r‰d C

rX
dD1

d‰d

� r

DX
dD1

‰d

D r:
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Hence, Z 1

0

�.x/ d x D

Z 1

0

MX
rD1

„rSr.x/ d x �

MX
rD1

r„r : (6.9)

Since �.x/ is an increasing function,Z 1

�

�.x/ d x � N��.�/ � �N� O� ln N�: (6.10)

Since �.x/ C O� ln.1 � x/ � 0 for 0 < x � �,Z �

0

�.x/ d x � O�. N� ln N� C �/

D

Z �

0

�.x/ d x C O�

Z �

0

ln.1 � x/ d x � 0: (6.11)

Therefore, by (6.9)–(6.11), we have

MX
rD1

r„r �

Z 1

0

�.x/ d x

D

Z �

0

�.x/ d x C

Z 1

�

�.x/ d x

� O�. N� ln N� C �/ � N� O� ln N�

D O��:

The proof is completed. �

Since
PM

kDr „k D
PM

iDr hi�
i
r �

PM
kDr hk , where the last inequality follows from �i

r < 1,
we have

X
r

r„r D

MX
rD1

MX
kDr

„k

�

MX
rD1

MX
kDr

hk

D
X

r

rhr :

Therefore, Theorem 6.4 gives an improved upper bound on O� compared with
P

r rhr . When
q ! 1,

P
r r„r !

P
r rhr . For finite fields with q � 16,

P
r r„r and

P
r rhr are very close,

but for smaller finite fields, the difference can be significant.
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We prove for a special case and demonstrate by simulation for general cases that the op-

timal value O� of (6.P1) is very close to
P

r r„r .

Theorem 6.6 For D D dM= N�e � 1, the optimal value O� of (6.P1) satisfies

O� � max
rD1;2;��� ;M

r

MX
iDr

„i :

Proof. Define a degree distribution ‰r by

‰r
d D

8<: 0 if d � r;
r

d.d�1/
if d D r C 1; � � � ; D � 1;

r
D�1

if d D D:

(6.12)

Recall the definition of Sr.xI ‰/ in (6.8). For M � r 0 � r , we will show that

Sr 0.xI ‰r/ C r ln.1 � x/ > 0; 0 � x � �: (6.13)

By Lemma B.3 in Appendix B,

�r ln.1 � x/ D r

1X
dDr 0C1

1

d � 1
Id�r 0;r 0.x/:

By (6.8) and (6.12),

Sr 0.xI ‰r/ C r ln.1 � x/ �

DX
dDr 0C1

d‰r
d Id�r 0;r 0.x/ � r

1X
dDr 0C1

1

d � 1
Id�r 0;r 0.x/

D r
D

D � 1
ID�r 0;r 0.x/ � r

1X
dDD

1

d � 1
Id�r 0;r 0.x/

D r ID�r 0;r 0.x/ � r

1X
dDDC1

1

d � 1
Id�r 0;r 0.x/:

The expression above is strictly positive for x 2 Œ0; �� if and only if

1X
dDDC1

1

d � 1

Id�r 0;r 0.x/

ID�r 0;r 0.x/
< 1 for x 2 Œ0; ��: (6.14)
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By Lemma B.1 in Appendix B, Id�r0;r0 .x/

ID�r0;r0 .x/
is monotonically increasing, so we only need to

prove the above inequality for x D �. By Lemma B.2 in Appendix B, Id�r0;r0 .�/

ID�r0;r0 .�/
< .1 �

N�
M

/d�D .
Therefore,

1X
dDDC1

1

d � 1

Id�r 0;r 0.x/

ID�r 0;r 0.x/
�

1

D

1X
dDDC1

Id�r 0;r 0.�/

ID�r 0;r 0.�/

<
1

D

1X
dDDC1

�
1 �

N�

M

�d�D

D
M � N�

D N�

� 1;

where the last inequality follows from D D dM= N�e � 1. So we have established (6.14) and hence
(6.13).

Finally, by (6.7) and (6.13), we have for 0 � x � �,

�.xI ‰r/ �
X
r 0�r

„r 0Sr 0.xI ‰r/

> � ln.1 � x/r
X
r 0�r

„r 0 ;

or

�.xI ‰r/ C

0@r
X
r 0�r

„r 0

1A ln.1 � x/ > 0:

Hence, we conclude that O� � r
P

r 0�r „r 0 . The proof is completed by considering all r D

1; 2; � � � ; M . �

Though in general the lower bound in Theorem 6.6 is not tight, we can show for a special
case that it converges asymptotically to the upper bound in Theorem 6.4. Consider a rank distri-
bution .h0; h1; : : : ; hM / with h� D 1 for some 1 � � � M . Theorem 6.6 implies that O� � �„� .
On the other hand, Theorem 6.4 says that � O� �

P
r r„r D �„� C

P
r<� r„r . Note that � can

be arbitrarily close to 1, and
P

r<� r„r ! 0 and „� ! h� when the field size goes to infinity.
Thus, both the upper bound in Theorem 6.4 and the lower bound in Theorem 6.6 converge to
�h� , the capacity of the LOC with empirical rank distribution converging to h.

We can compute the achievable rates of BATS codes numerically by solving (6.P1). Set
M D 16 and q D 28. Totally 4 � 104 rank distributions are tested.1 For each rank distribution
1A rank distribution is randomly generated as follows. First, select x1; x2; : : : ; xM�1 independently and uniformly at ran-
dom in Œ0; 1�. Next, sort fxi g so that x1 � x2 � � � � � xM�1. Then, the rank distribution is given by h0 D 0, and for
1 � r � M , hr D xr � xr�1, where x0 D 1 and xM D 1. This gives an almost uniform sampling among all the rank
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h we solve (6.P1) for N� D 0:98; 0:99, and 0:995. The empirical distributions of Q� , � O�=
P

r r„r

are shown in Figure 6.1. By Theorem 6.4, Q� � 1. The results show that when � D 0:995, for
more than 99:1% of the rank distributions, Q� is larger than 0:96; for all the rank distributions
the smallest Q� is 0:9057. The figures in Figure 6.1 clearly show the trend that when � becomes
smaller, O� becomes larger for the same rank distribution. Note that for these rank distributions,
the ratio

P
r r„r=

P
r rhr are all larger than 0:999, and therefore, the achievable rate of BATS

code (i.e., � O�) is very close to the capacity
P

r rhr for all the rank distributions evaluated.

η = 0.995

η = 0.99

η = 0.98

100

10–1

10–2

10–3

10–4

10–5

0.88 0.9 0.92 0.94 0.96 0.98 1

eC
D

F

Figure 6.1: The empirical cumulative distribution function (eCDF) of Q� D � O�=
P

r r„r for 4 �

104 rank distributions. Here q D 28 and M D 16.

Remark 6.7 For LT codes, we can apply Theorem 6.6 with M D 1 and „i D hi , and obtain
that O� � h1. Therefore, the achievable rate of LT code is at least �h1, which tends to h1 as � ! 1.
In other words, LT codes achieve the capacity of a channel with packet loss rate 1 � h1.

distributions with
PM

iD1 hi D 1 according to [75]. The reason that we choose h0 D 0 is as follows. For a rank distribution
.h0; : : : ; hM / with h0 > 0, we obtain a new rank distribution .h0

0 D 0; h0
i

D hi =.1 � h0/ W i D 1; : : : ; M/. Optimiza-
tion (6.P1) is equivalent for these two rank distributions except that the objective function is scaled by 1 � h0. Thus, the
values of Q� D � O�=

P
r r„r for both .h0; : : : ; hM / and .h0

0; : : : ; h0
M / are the same.
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6.3 OPTIMIZATIONS FORMULTIPLERANK
DISTRIBUTIONS

In the previous part of this chapter, we consider how to find an optimal degree distribution for a
single rank distribution. For many scenarios, however, we need a degree distribution that is good
for multiple rank distributions. In a general multicast problem, the rank distributions observed
by the destination nodes can be different. Even for a single destination node, the empirical rank
distribution may not always converge to the same value.

Let H be a set of rank distributions. Note that for a rank distribution .h1; h2; : : : ; hM /

in H, it is implied that h0 D 1 �
PM

iD1 hi . Consider a degree distribution ‰ , h 2 H, and �h
satisfying the following set of constraints:

�.xI h; ‰/ C �h ln.1 � x/ � 0; 8x 2 Œ0; ��; 8h 2 H: (6.15)

Then for a destination node with the empirical rank distribution converges in probability to
h 2 H, rate ��h is �-achievable by the BATS code with degree distribution ‰ .

To illustrate the discussion, we extend the three-node network in Figure 1.1 with two
more destination nodes as shown in Figure 6.2. In this network, node R transmits the same
packets on its three outgoing links, but these links have different loss rates. Fixing M D 16,
q D 256 and a certain inner code at node R (RLNC with qm D 256 and M recoded packets),
we obtain the rank distributions hi for node Dsti , i D 1; 2; 3 in Table 6.1. For this example,
the maximum �-achievable rates are evaluated and listed in Table 6.2. From the rows labeled
by EŒh�, ‰1, ‰2, and ‰3, we observe that that the degree distribution optimized for one rank
distribution may not give a good performance for the other rank distributions. In particular,
the degree distributions optimized for destination nodes Dst1 and Dst2, namely ‰1 and ‰2,
respectively, give a poor performance for destination node Dst3.

RSrc

Dst2

Dst1

Dst3

Figure 6.2: In this network, node Src is the source node. Node Dst1; Dst2, and Dst3 are the
destination nodes. Node R is the intermediate node that does not demand the file. All links are
capable of transmitting one packet per use. The link .Src; R/ has packet loss rate 0:2. The links
.R; Dsti /; i D 1; 2; 3 have packet loss rates 0:1, 0:2, and 0:3, respectively.
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Table 6.1: The rank distributions for the three destination nodes in Figure 6.2

Table 6.2: The achievable rates for different pairs of rank distributions and degree distributions.
For each rank distribution in the first row and each degree distribution in the first column, we
evaluate themaximum 0:99-achievable rate in the table. For i D 1; 2; 3, ‰ i is obtained by solving
(6.P1) with hi in place of h. ‰3 can also be obtained by solving (6.P2) with fh1; h2; h3g in place
of H. ‰ fair is obtain by solving (6.P3) with fh1; h2; h3g in place of H.

h1 h2 h3

[h] 12.58 11.91 10.84

Ψ1 12.55 6.10 1.77

Ψ2 11.96 11.89 4.79

Ψ3 10.99 10.95 10.81

Ψfair 11.94 11.35 10.28
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6.3.1 OPTIMIZATIONPROBLEMS
There are different criteria to optimize the degree distribution for a set of rank distributions.
Here we discuss a few examples.

Multicast
One performance metric of interest is the multicast rate, which is a rate achievable by all the
rank distributions using the same degree distribution. We can find the maximum multicast rate
for a set of rank distributions H by solving the following optimization problem:

max
‰;�

�

s.t. �.xI h; ‰/ C � ln.1 � x/ � 0; 8x 2 Œ0; ��; 8h 2 H;X
d

‰d D 1 and ‰d � 0; d D 1; � � � ; D:
(6.P2)

Denote by O�H the maximum of (6.P2) for H. Then
O�H D max

‰
min
h2H

O�h;‰ � min
h2H

O�h: (6.16)

For the example that H D fh1; h2; h3g, the optimal degree distribution of (6.P2) is exactly ‰3

and � minh2H O�h D 10:81 D ��h3 . Since nodes t1 and t2 can emulate the packet loss rate of
node t3, the multicast rate � O�h3

is achievable. So in this case, BATS codes can achieve a multicast
rate equal to � minh2H O�h. In general, however, O�H may not be very close to minh2H �h.

FairMulticast
The degree distribution obtained using (6.P2) may not be fair for all the destination nodes. In
the previous example of three destination nodes, for the degree distribution ‰3 optimized using
(6.P2), nodes Dst1 and Dst2 do not achieve a rate much higher than node Dst3 though they
have much lower packet loss rates than node Dst3 (see Table 6.2). For a single rank distribution
h, we know that the achievable rate of BATS codes is upper bounded by and is very close to
EŒh�. To ensure that a destination node with a lower packet loss rate has a higher multicast rate,
we can find the percentage of EŒh� that is achievable for all the rank distributions h in H using
the following optimization:

max
‰;˛

˛

s.t. �.xI h; ‰/ C ˛ EŒh� ln.1 � x/ � 0; 8x 2 Œ0; ��; 8h 2 H;X
d

‰d D 1 and ‰d � 0; d D 1; � � � ; D:
(6.P3)

Denote by ǪH themaximumof (6.P3).We know that for each rank distribution h inH, � ǪH EŒh�

is an achievable rate, and hence � ǪH is the percentage of EŒh� that is achievable for all the rank
distributions in H. Then by letting

Ǫh;‰ D

O�h;‰

EŒh�
(6.17)
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and

Ǫh D

O�h

EŒh�
; (6.18)

we have
ǪH D max

‰
min
h2H

Ǫh;‰ � min
h2H

Ǫh: (6.19)

When H D fh1; h2; h3g and � D 0:99, the percentage is 94.9 (the optimal value of (6.P3)
multiplied by 100�). The performance of the optimal degree distribution of (6.P3) is shown in
the last row of Table 6.2. A BATS codes with this degree distribution can achieve 95.0, 95.3,
and 94.8 percentage of EŒhi � for i D 1; 2; 3, respectively.

We now build a connection between these two optimizations by showing that the opti-
mization (6.P3) can be equivalently converted to the optimization (6.P2). Define for 0 < � �

M ,
D� D

˚
h 2 PM

W EŒh� D �
	

: (6.20)

Lemma 6.8 Optimization (6.P3) for H � D�, 0 < � � M , has the same optimal degree distri-
bution as optimization (6.P2) forH, and ǪH D O�H=�.

Proof. Since for any h 2 H, EŒh� D �, the lemma follows directly from (6.19). �

Using different objective functions and constraints, other optimization problems can be
formulated to optimize a degree distribution for a set of rank distributions. For example, we can
optimize the average rate and average completion time of all the destination nodes.

6.3.2 SIMPLIFICATIONS
When H has a small cardinality, the optimizations (6.P2) and (6.P3) are easy to solve. We study
how to simplify the optimizations when jHj is large or infinite. Let RC be the set of non-negative
real numbers, and let

PM D

(
.h1; : : : ; hM / 2 .RC/M

W

MX
iD1

hi � 1

)
;

i.e., PM be the set of all rank distributions with the maximum rank equal to M .

Linearity andDominance
We first prove some properties about the degree distribution optimization of BATS codes.

Theorem 6.9 For any ˇ; ˇ0 � 0, h; h0 2 .RC/M , and any degree distribution ‰ ,

(1) O�ˇhCˇ 0h0;‰ � ˇ O�h;‰ C ˇ0 O�h0;‰ ;
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(2) O�ˇhCˇ 0h0;‰ � minf O�h;‰ ; O�h0;‰g when ˇ C ˇ0 D 1; and

(3) ǪˇhCˇ 0h0;‰ � minf Ǫh;‰ ; Ǫh0;‰g

Proof. For any x 2 Œ0; ��, �.xI h; ‰/ C � ln.1 � x/ is a linear function of .�; h/. Therefore, for
x 2 Œ0; 1�, if

�.xI h; ‰/ C � ln.1 � x/ � 0;

and
�.xI h0; ‰/ C � 0 ln.1 � x/ � 0;

then for any ˇ; ˇ0 � 0, we have

�.xI ˇh C ˇ0h0; ‰/ C .ˇ� C ˇ0� 0/ ln.1 � x/ � 0;

which implies (1). (2) is a consequence of (1) with ˇ C ˇ0 D 1. Following (6.17), (6.18), and
(1), we have

ǪˇhCˇ 0h0;‰ EŒˇh C ˇ0h0� D O�ˇhCˇ 0h0;‰

� ˇ O�h;‰ C ˇ0 O�h0;‰

D ˇ Ǫh;‰ EŒh� C ˇ0
Ǫh0;‰ EŒh0�

� minf O�h;‰ ; O�h0;‰g
�
ˇ EŒh� C ˇ0 EŒh0�

�
:

Since EŒˇh C ˇ0h0� D ˇ EŒh� C ˇ0 EŒh0�, we obtain (3). The theorem is proved. �

Consider the case that H in the optimization (6.P2) is a ray generated by a rank distribu-
tion h D .h1; : : : ; hM / with

PM
iD1 hi > 0 as

H D hhi ,
(

˛h W ˛ � 0; ˛

MX
iD1

hi � 1

)
:

Then it follows from 1) in Theorem 6.9 that there exists a degree distribution which is optimal
for all the rank distributions in hhi.

Remark 6.10 Following Remark 6.7, h1 is achievable by LT codes. When M D 1, hh1i for any
0 < h1 � 1 includes all possible rank distributions, and hence there exists a degree distribution
that is optimal for all the rank distributions for M D 1. In other words, there exists a universally
optimal degree distribution when M D 1.

The partial order (dominance relation) defined on rank distributions in Section 4.1.2 can
be extended for vectors in .RC/M . For h D .h1; : : : ; hM / and h0 D .h0

1; : : : ; h0
M / in .RC/M , we

say that h dominates h0, denoted by h < h0, if
P

i�k hi �
P

i�k h0
i for all k D 1; : : : ; M .

Lemma 6.11 For two vectors h D .h1; : : : ; hM / and h0 D .h0
1; : : : ; h0

M / in .RC/M with h < h0,
and 0 � v1 � : : : � vM , we have

PM
iDk vihi �

PM
iDk vih

0
i , where the equality holds when h D h0.
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Proof. Fix 1 � k � M . Let v0

k
D vk and v0

i D vi � vi�1 for i D k C 1; : : : ; M . Since v0
i � 0,

MX
iDk

vihi D

MX
iDk

v0
i

X
j �i

hj �

MX
iDk

v0
i

X
j �i

h0
j D

MX
iDk

vih
0
i ;

where the inequality is an equality if and only if h D h0. �

Now we study another property of �.xI h; ‰/ related to the dominance relation.

Lemma 6.12 Fix x 2 Œ0; 1/, and two rank distributions h < h0. If

�.xI h0; ‰/ C � ln.1 � x/ � 0;

then
�.xI h; ‰/ C � ln.1 � x/ � 0:

Proof. Since �M
k

� �M �1
k

� � � � � �k
k

� 0, we have for k D 1; : : : ; M ,X
i�k

„i .h/ D
X
i�k

�k
s hk

�
X
i�k

�k
s h0

k

D
X
i�k

„i .h0/;

where the inequality follows from Lemma 6.11 and the two equalities follow from (2.11), i.e,

.„1.h/; : : : ; „M .h// < .„1.h0/; : : : ; „M .h0//:

Since

SrC1.x/ � Sr.x/ D

DX
dDrC1

d‰d

 
d � 1

r

!
xd�r�1.1 � x/r

� 0;

again by Lemma 6.11, we have

�.xI h; ‰/ D

MX
rD1

„r.h/Sr.x/

�

MX
rD1

„r.h0/Sr.x/

D �.xI h0; ‰/;

where the inequality follows from Lemma 6.11 and the two equalities follow from (6.7). �
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Lemma 6.12 says that for two rank distributions h < h0, not only O�h � O�h0 (the achievable
rate of BATS codes for h is higher than that for h0), but also for any degree distribution ‰ ,
O�h;‰ � O�h0;‰ . For example, the three rank distributions for Figure 6.2 satisfies h1 < h2 < h3.
We can see from Table 6.1 that for each degree distribution evaluated, the achievable rate for
h1 (resp. h2) is larger than that of h2 (resp. h3).

Theorem 6.13 Consider the optimization (6.P2) for a set of rank distributionsH. Let B be a subset
of H such that for any h 2 H there exists h0 2 B such that h < h0. Then, the optimization (6.P2) is
equivalent if we replaceH by B.

Proof. Let ‰ be a degree distribution that achieves the optimal value O�B of (6.P2) with B in
place ofH. Since B � H, we have O�B � O�H. For any h 2 H n B, find h0 2 B such that h < h0. By
Lemma 6.12, O�h;‰ � O�h0;‰ � O�B, which implies O�H � O�B. Hence, O�B D O�H, which is achieved
by ‰ . �

This theorem provides a general approach to simplifying (6.P2) by replacing H with a
minimal subset H� where for any h 2 H there exists h0 2 H� such that h < h0. Since H� is
minimal, for any h ¤ h0 2 H�, neither h < h0 nor h0 < h.

Convex Hull and Cone
Let hull.A/ be the convex hull ofA � .RC/M , i.e., hull.A/ is the set of all convex combinations
of the vectors in A.

Theorem 6.14 Consider the optimization (6.P2) for a set of rank distributions H. Let A be a set
of rank distributions such that hull.A/ D hull.H/. Then, the optimization (6.P2) is equivalent if we
replaceH byA.

Proof. Let ‰ be a degree distribution that achieves the optimal value O�H of (6.P2) for the set of
rank distributions H. Consider any h 2 hull.H/. Since h is a convex combination of the vectors
inH, by (2) in Theorem 6.9 and (6.16), O�h;‰ � O�H, and hence O�hull.H/ � O�H. On the other hand,
O�hull.H/ � O�H since H � hull.H/. Therefore, O�hull.H/ D O�H, which can be achieved by ‰ .

Applying the same argument for A in place of H, we obtain O�A D O�hull.A/ D O�hull.H/ D

O�H, which can be achieved by ‰ . �

This theorem provides further simplifications of (6.P2), i.e., instead of replacing H by
a minimal subset H�, we can further replace H by the vertices of hull.H�/ if it is a polytope.
When hull.H�/ is not a polytope, we may approximate it by a polytope to simplify the problem.

For A � .RC/M , let cone.A/ be the smallest convex cone that includes A as a subset. In
other words,

cone.A/ D f˛z W ˛ � 0; z 2 hull.A/g:
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Theorem 6.15 Consider the optimization (6.P3) for a setH of rank distributions. Let C be a set of
rank distributions such that cone.C/ D cone.H/. Then the optimization (6.P3) is equivalent if we
replaceH by C.

Proof. Let ‰ be a degree distribution that achieves the optimal value ǪH in (6.P3) for H. Any
h 2 cone.H/ \ PM is a conical combination of vectors inH, and by (3) in Theorem 6.9), Ǫh;‰ �

ǪH. So Ǫcone.H/\PM
� ǪH. On the other hand, Ǫcone.H/\PM

� ǪH since H � cone.H/ \ PM .
Hence, Ǫcone.H/\PM

D ǪH, which can be achieved by ‰ .
Applying the same argument for C in place of H, we obtain ǪC D Ǫhull.C/\PM

D

Ǫhull.H/\PM
D ǪH, which can be achieved by ‰ . �

Theorem 6.16 For H � PM with H ¤ f.0; : : : ; 0/g, optimization (6.P3) for H is equivalent to
optimization (6.P2) for cone.H/ \ D1.

Proof. To save notation, we write
PM

iD1 as
P

i throughout the proof. Let

��.H/ D min
(

EŒh� W h 2 cone.H/;
X

i

hi D 1

)
:

SinceH ¤ f.0; : : : ; 0/g, we know that there exists .h1; : : : ; hM / 2 cone.H/ with
P

i hi D 1. We
now show that ��.H/ � 1. For any h D .h1; : : : ; hM / 2 cone.H/ with

P
i hi D 1, since h0 D 0,

it is evident that EŒh� � 1. Therefore, ��.H/ � 1. Fix 0 < � � ��.H/. As we will see, we only
need to consider � D 1 to prove the theorem.

Next, we show that

cone.cone.H/ \ D�/ D cone.H/: (6.21)

Since cone.H/ \ D� � cone.H/, we have cone.cone.H/ \ D�/ � cone.H/. Fix
h D .h1; : : : ; hM / 2 cone.H/ with h ¤ .0; : : : ; 0/. Let

h0
D .h0

1; : : : ; h0
M / D

hP
i hi

and
h00

D .h00
1; : : : ; h00

M / D �
h0

EŒh0�
:

We know that h0; h00 2 cone.H/ and
P

i h0
i D 1. SinceX

i

h00
i D

�

EŒh0�
�

��.H/

EŒh0�
� 1
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and

EŒh00� D �;

we have h00 2 cone.H/ \ D� and hence h 2 cone.cone.H/ \ D�/. Thus, we have cone.H/ �

cone.cone.H/ \ D�/.
Due to (6.21), Theorem 6.15 says (6.P3) for H is equivalent to (6.P3) for cone.H/ \ D�,

while the latter is the same as (6.P2) for cone.H/ \ D� with the objective function scaled by
1=�. The proof is completed by considering � D 1. �

6.4 GUARANTEEDRATESANDUNIVERSALITY
Using the techniques in the last section, we provide some numerical evaluation examples that
demonstrate the performance of BATS codes for multiple rank distributions.

6.4.1 GUARANTEEDMULTICASTRATES
We first evaluate the guaranteed multicast rates of BATS codes using BP decoding. For a rank
distribution h D .h1; : : : ; hM /, we know that the maximum achievable rate of BATS codes is
upper bounded by EŒh� D

PM
iD1 ihi . For a real number 0 � � � M , define

B� D fh 2 PM W EŒh� � �g :

The set B� includes all the rank distributions that can potentially support rate �. For any set of
rank distribution H � B�, O�H � O�B�

.
For any set of rank distributionsH with minh2H EŒh� D �, � O�B�

is a guaranteed multicast
rate for H. Note that any multicast rate higher than � is not achievable by H. Therefore, by
comparing � O�B�

with �, we can gain some insight into the achievable multicast rate of BATS
codes. Directly solving (6.P2) for B� is difficult since B� contains infinitely many of rank dis-
tributions, but we can simplify the problem using Theorem 6.14 as prescribed in the following
lemma. Recall the convex polytope D� defined in (6.20).

Lemma 6.17 The optimization (6.P2) for B� is equivalent to the optimization (6.P2) for the set of
vertices ofD�.

Proof. We see that D� � B�. For each h 2 B� n D�, define h0 D �h= EŒh�. Then h0 2 D� and
h < h0. Thus by Theorem 6.13, (6.P2) for B� is equivalent to (6.P2) for D�, which by Theo-
rem 6.14 is also equivalent to (6.P2) for the set of vertices of D�. �

We discuss briefly in Appendix C how to find the vertices of D�. See Figure 6.3 for � O�B�

when M D 16 or 32, q D 256, and � D 0:99. For example, � O�B.10/ D 8:10 when M D 16.
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Figure 6.3: The optimal value of (6.P2) for B�, where q D 28 and � D 0:99.

6.4.2 UNIVERSALITY
In general, BATS codes are not universal. There does not exist a degree distribution that can
achieve rates close to

P
i i„i for all rank distributions for a given batch size M , except for M D 1,

the case of LT/Raptor codes. The universality of BATS codes for a set of degree distributions H
can be measured by � ǪH: the more � ǪH is close to 1, the more BATS codes are close to being
universal for H. To see the universality of BATS codes, we evaluate (6.P3) for B�, � 2 Œ0; M �,
which can simplified as follows.

Lemma 6.18 For 0 < � � M , optimization (6.P3) for B� is equivalent to (6.P3) for D�. More-
over, ǪD�

D O�D�
=� and for � 2 .0; 1�, ǪD�

D ǪD1
.

Proof. First cone.D�/ � cone.B�/ sinceD� � B�. For any h 2 B� n D�, since �h= EŒh� 2 D�,
we have B� � cone.D�/, and hence cone.B�/ � cone.D�/. Therefore, cone.B�/ D cone.D�/.
By Theorem 6.15, (6.P3) for B� is equivalent to (6.P3) for D�. Finally, ǪD�

D O�D�
=� follows

from Lemma 6.8. �

We plot � ǪB�
in Figure 6.4 for � 2 .0; M�, where we see that the universality roughly

increases linearly with � with the minimum value at � 2 .0; 1�. The universality of BATS codes
for PM is given by � ǪB1

. In Table 6.3, we give � ǪPM
for M D 1; 2; 4; : : : ; 64. Take M D 16 as

an example. The value � Ǫ D 0:5274 implies a worst guaranteed rate for an arbitrary number of
destination nodes with arbitrary empirical rank distributions: A destination node can decode
the original file with high probability after receiving n batches such that 0:5274

Pn
iD1 rk.Hi /
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is larger than the number of original input packets, where Hi is the transfer matrix of the i th
batch. When the possible empirical rank distributions are in a smaller set, the optimal value of
(6.P3) can be much larger, as in the network with three destination nodes.
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Figure 6.4: The optimal value of (6.P3) for B� with q D 28 and � D 0:99.

Table 6.3: The maximum value Ǫ of (6.P3) when H is the set of all rank distributions for a given
batch size, i.e., PM . Here, � D 0:99.

M 1 2 4 8 16 32

η α 0.9942 0.8383 0.7068 0.6060 0.5274 0.4657^
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C H A P T E R 7

Finite-Length Analysis of BP
Decoding

The asymptotic performance of BATS codes with belief propagation (BP) decoding has been
analyzed, and a sufficient condition for the BP decoder to recover a given fraction of the input
symbols with high probability was obtained in Chapter 5. This sufficient condition enables us
to design BATS codes with good performance for a large number of input symbols (e.g., tens of
thousands). It has been verified theoretically for certain special cases and demonstrated numer-
ically for general cases that BATS codes can achieve rates very close to optimality for a given
rank distribution of the transfer matrices.

The performance of BATS codes for a relatively small number of input symbols is of
important practical interest. For such codes, however, the error bound obtained in the asymptotic
analysis is rather loose (if valid), and the degree distribution optimized asymptotically does not
give a good performance. Toward designing better BATS codes for a relatively small number
of input symbols (e.g., a few hundreds), we analyze in this chapter BATS codes with a finite
number of input symbols for BP decoding. Parts of the chapter were published in [54, 96, 102].
More results about finite-length analysis and degree distribution optimizations can be found in
[110, 111].

Karp et al. [29] provided a recursive formula to compute the error probability of LT codes
for a given number of input symbols. Maneva and Shokrollahi [49] used a random model of the
number of coded symbols and obtained a simpler formula for BP decoding. Our finite length
analysis results for BATS codes are more than generalizations of the previous results; in partic-
ular, Sections 7.2 and 7.3 provide new analytical tools for LT codes.

7.1 STOPPINGTIMEOFBPDECODING

We follow the discussion of BATS codes in Chapter 2, and asume that the batch degrees dgi ; i D

1; : : : are i.i.d. random variables with a given distribution ‰ D .‰1; : : : ; ‰K/, the batch transfer
matrices Hi , i D 1; 2; : : : are independent and follow the same distribution, and Hi , i D 1; 2; : : :

are also independent of the encoding process. We characterize the distribution of the stopping
time of BP.n/ for finite values of n (see Section 2.3.1 for the description of BP.n/).



106 7. FINITE-LENGTHANALYSISOFBPDECODING
7.1.1 BASICRECURSIVE FORMULA
Let R

.t/
n be the number of decodable input symbols at time t (which is also called the input ripple

size in the literature of LT codes). Recall that BP decoding stops when there are no decodable
input symbols. The probability that BP.n/ stops at time t is

Pstop.t jn/ , Pr
n
R.t/

n D 0; R.�/
n > 0; � < t

o
:

Let C
.t/
n be the number of undecodable batches at time t . Define an .n C 1/ � .K � t C 1/

matrix ƒ
.t/
n as

ƒ.t/
n Œc; r� , Pr

n
C .t/

n D c; R.t/
n D r; R.�/

n > 0; � < t
o

; (7.1)

where c D 0; 1; : : : ; n and r D 0; 1; : : : ; K � t . With the definition of ƒ
.t/
n Œc; r�, we have

Pstop.t jn/ D

nX
cD0

ƒ.t/
n Œc; 0�: (7.2)

Wewill express ƒ
.t/
n in terms of ƒ

.t�1/
n , so that we can calculate ƒ

.t/
n recursively for t D 0; : : : ; K,

which together with (7.2) gives a formula to calculate Pstop.t jn/.
Let

Bi.kI n; p/ ,
 

n

k

!
pk .1 � p/n�k

and

hyge.kI n; i; j / ,

8<: . i
k /.n�i

j �k /

.n
j /

maxf0; i C j � ng � k � minfi; j g

0 o:w:

be the p.m.f. of the binomial distribution and the hypergeometric distribution, respectively.

Theorem 7.1 Consider a BATS code with K input symbols, n batches, degree distribution ‰ , rank
distribution h of the transfer matrices, and batch size M . Define

pt;s D

8̂̂̂̂
<̂
ˆ̂̂:

‰s„0
s t D 0;

„s

sCtX
dDsC1

‰d

d

K
hyge.d � s � 1I K � 1; d � 1; t � 1/ t > 0; s C t � K;

0 t > 0; s C t > K;

and

pt D

MX
sD0

pt;s:
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We have

ƒ.0/
n Œc; W� D Bi.cI n; 1 � �0/e0Qn�c

0 ; (7.3)

and for t > 0,

ƒ.t/
n Œc; W� D

nX
c0Dc

Bi.cI c0; 1 � �t /ƒ
.t�1/
n Œc0; 1W�Qc0�c

t (7.4)

where �t and Qt are defined as follows:

1. �0 D p0.

2. For t > 0,
�t D

pt

1 �
Pt�1

�D0 p�

:

3. For t D 0; 1; : : : ; K, Qt is a .K � t C 1/ � .K � t C 1/ matrix with

Qt Œi; j � D

j ^MX
sDj �i

pt;s

pt

hyge.i C s � j I K � t; i; s/ (7.5)

for 0 _ .j � M/ � i � j � K � t , and Qt Œi; j � D 0 otherwise,

where x _ y is the maximum of x and y.

Proof. The proof is left to Appendix D.1. The idea is to characterize the corresponding proba-
bility transition matrix between two consecutive decoding times. �

Remark 7.2 In the above theorem, when pt D 0, Qt involves undefined entries 0=0. We use
the following convention for the iterative formula in the above theorem:

1. 0Qk
t D 0, k � 1; and

2. Q0
t is the identity matrix.

With these convention, we have that when p0 D 0,

ƒ.0/
n Œc; W� D 0; for c D 0; 1; : : : ; n � 1;

ƒ.0/
n Œn; W� D e0:

When pt D 0, t > 0,
ƒ.t/

n Œc; W� D ƒ.t�1/
n Œc; 1W�:

We will use the same convention to simplify the formulae in this and the next chapter without
further elaborations.
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7.1.2 EXPLANATIONSOF SOMENOTATIONS
The notations defined in Theorem 7.1 deserve some explanations. First, pt;s is the probability
that a batch is decodable for the first time at time t and has degree s at time t . Then pt is the
probability that a batch is decodable for the first time at time t . Note that p0 D 0 is equivalent
to
PM

dD1 ‰d „0
d

D 0, i.e., the probability that a batch is decodable at time 0 is 0. In this case, we
have Pstop.0jn/ D PrfR0

n D 0g D 1, i.e., the decoding stops at time 0 with probability 1. When
the probability that a batch is decodable at time 0 is positive, the following lemma (proved in
Appendix D.2) implies that pt > 0 for t D 0; 1; : : : ; K.

The probability that a batch is decodable at time 0 is equal to
PM

dD1 ‰d „0
d
. Define rBP as

the smallest integer d such that ‰d „0
d

> 0. Under the assumption that
PM

dD1 ‰d „0
d

> 0, i.e.,
the probability that a batch is decodable at time 0 is positive, rBP is well defined.

Lemma 7.3 When a batch is decodable at time 0 with positive probability,

pt;s

8̂<̂
:

D 0; for t C s < rBP;

> 0; for t D 0 and s D rBP;

> 0; for t � 1; t C s � rBP and s < rBP:

We also note that �t (t > 0) is the probability that a batch is decodable at time t under
the condition that it is not decodable at time t � 1. The following properties about �t and pt are
straightforward and they are proved in Appendix D.2.

Lemma 7.4

1. For 0 � t � K,
tY

�D0

.1 � �� / D 1 �

tX
�D0

p� :

2. For 0 < t � K,

�t

t�1Y
�D0

.1 � �� / D pt :

When defined, the matrix Qt can be regarded as a transition matrix. Suppose k batches
become decodable at time t and we generate new decodable input symbols from these k batches
one batch after another. Define random variable Z0 D R

.t�1/
n � 1 for t > 0 or Z0 � 0 for t D 0,

and for i D 1; : : : ; k define Zi as the total number of decodable input symbols after having
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generated new decodable input symbols from the first i decodable batches. Note that Zk D R
.t/
n .

Then Z0; : : : ; Zk forms a homogeneous Markov chain with the transition matrix Qt .
To evaluate the formulae in Theorem 7.1, we first calculate pt;s for t D 0; 1; : : : ; K and

s D 0; 1; : : : ; M , which takes O.K2M/ real number operations. We then calculate �t and Qt

for t D 0; 1; : : : ; K using O.KM/ and O.K2M 2/ real number operations, respectively. Thus, it
totally takes O.K2M 2/ real number operations to calculate �t and Qt . Note that pt;s , �t , and Qt

do not depend on n, and are determined by K, ‰ and h only. Once they are calculated, we can
use them in the evaluation of ƒt

n for different values of n. Note that the matrix Qt has at most
M C 1 non-zero entries in each column, so the vector-matrix multiplication takes O.KM/ real
number operations. Since a total of O.Kn2/ such vector-matrix multiplications are used in the
formulae, the complexity for computing Pstop.t jn/ using Theorem 7.1 is O.K2M 2 C K2n2M/

real number operations.

7.1.3 SPECIALCASES
Let us examine a few special cases of the formulae in Theorem 7.1.

Example 7.5 (‰1 D 1) Consider a BATS code with ‰1 D 1. In this special case, every batch
has degree one and a packet in the batch is generated by the input packet involved in the batch
multiplied by a scalar. The decoding becomes the coupon collector’s problem, where we can treat
the input packets as the coupons and the batches as the boxes.1 In this case, when a batch is
decodable at time 0, it can recover one input packet; otherwise, the batch must have rank zero
at time 0.

It can be calculated that p0;1 D „0
1 and p0;s D 0 for s ¤ 1, i.e., a batch is decodable at time

0 with rank 1 and probability „0
1. All the components of Q0 are zero except that Q0Œi; i � D i=K

for i D 1; : : : ; K and Q0Œi; i C 1� D 1 � i=K for i D 0; : : : ; K � 1. When t > 0, we have pt;0 D

„0=K and pt;s D 0 for s > 0, i.e., a batch is decodable with rank 0 and probability „0=K. When
t > 0, Qt is the identity matrix.

Example 7.6 (t D K) In this example, we consider a general degree distribution and a general
rank distribution, and look at the decoding status when t D K. At time K, all the input symbols
are decoded so that all the batches have degree 0 at time K (after substitution). We have pK;0 D

„0

PK
dD1 ‰d

d
K

, pK;s D 0 for s > 0, �K D 1, and QK D Œ1�.

Example7.7 (LTCodes) Letting M D 1, „0 D h0, „0
0 D 1 and „1 D „0

1 D h1 inTheorem 7.1,
we obtain

p0;1 D ‰1h1 and p0;0 D 0;

1In the most discussed form of the coupon collector’s problem, each box contains one of the coupons. But in our case, it is
possible that a box contains nothing (i.e., the batch is not decodable at time 0).
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and for t > 0,

pt;0 D h0

tX
dD1

‰d

d

K

�
K�d
t�d

��
K�1
t�1

� D h0

tX
dD1

‰d

�
t�1
d�1

��
K
d

� ;

pt;1 D

8̂̂<̂
:̂

h1

tC1X
dD2

‰d

d.d � 1/

K

�
K�d

t�dC1

��
K�1
t�1

� D h1

tC1X
dD2

‰d .K � t/

�
t�1
d�2

��
K
d

� t < K;

0 t D K:

The matrix Qt , t D 0; 1; : : : ; K � 1 has the following expression: for i D 0; : : : ; K � t ,

Qt Œi; i � D
pt;0

pt

C
pt;1

pt

i

K � t
;

for i D 0; : : : ; K � t � 1,
Qt Œi; i C 1� D

pt;1

pt

�
1 �

i

K � t

�
;

and Qt Œi; j � D 0 otherwise.

Karp et al. [29] has given a formula for LT codes to recursively calculate the joint distri-
bution of the number of decodable received symbols (called output ripple size) and the number
of undecodable received symbols at each decoding step. Note that the distribution of output
ripple size determines the distribution of the input ripple size. Their formula is given in a poly-
nomial form and has an evaluation bit-complexity O.n3 log2.n/ log log.n// based on polynomial
evaluation and interpolation.

Note that it is possible to extend the approach in [29] for M > 1, i.e., recursively calcu-
lating the joint distribution of the number of decodable batches and the number of undecodable
batches. When M > 1, decodable batches with different degrees must be considered separately
and M recursive formulae must be provided for each positive degree value of the decodable
batches. The evaluation complexity of this extension increases exponentially with M (see an
outline of this extension in [55, Appendix]). Our approach [54, 102], which instead tracks the
number of decodable input symbols and the number of undecodable batches at each step, gives
a formula with complexity equal to a quadratic function of M . Further, our formula is given in
a matrix form, which facilitates certain analyses as we will demonstrate in this monograph.

7.2 FURTHERRESULTSONBPDECODING
In this section, we study the following performance measues for BP decoding:

1. the distribution of the stopping time of BP.n/ for a sequence of n;

2. the decrease rate of the error probability of BP.n/ when n increases;
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3. the distribution of the number of batches consumed by BP� (defined in Section 2.3.2);

and

4. the expected number of batches consumed by BP�.

7.2.1 STOPPINGTIMEDISTRIBUTION
For a given number n, ƒ

.t/
n can be calculated recursively for t D 0; : : : ; K using Theorem 7.1 and

hence the stopping time distribution Pstop.�jn/ can be calculated using (7.2). But for applications
that will be discussed later in this section, wemaywant to calculate Pstop.�jn0/ for n0 D 0; 1; : : : ; n,
where n > 0 is a given integer. Using the formula in Theorem 7.1, we have to run the program for
each value of n0. In Theorem 7.8, we will propose a new formula that can simplify the calculation
of Pstop.�jn/ for a range of n.

Theorem 7.8 For n � 0 and t � 0,

Pstop.t jn/ D

nX
cD0

 
n

c

! 
1 �

tX
�D0

p�

!c

ƒ.t/
n�cŒ0; 0�; (7.6)

where the first row of the matrices ƒ
.t/
n0 , n0 D 0; 1; : : : ; n can be computed by the following recursion:

For n0 D 0; 1; : : : ; n,
ƒ

.0/
n0 Œ0; W� D .p0Q0/n0

Œ0; W�; (7.7)

and for t > 0

ƒ
.t/
n0 Œ0; W� D

n0X
cD0

 
n0

c

!
ƒ

.t�1/
n0�c Œ0; 1W�.ptQt /

c : (7.8)

Proof. The formula in Theorem 7.1 implies that

ƒ.t/
n Œc; W� D

 
n

c

!
tY

iD0

.1 � �i /
cƒ.t/

n�cŒ0; W�:

The theorem can be derived by substituting the above equality into (7.2) and (7.4). See the details
in Appendix D.3. �

Remark 7.9 The above theorem only involves the 0-th row of ƒ
.t/
n0 , which has a particular

meaning. According to the definition, we know that

ƒ
.t/
n0 Œ0; r� D Pr

n
C

.t/
n0 D 0; R

.t/
n0 D r; R

.�/
n0 > 0; � < t

o
:
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In other words, ƒ
.t/
n0 Œ0; r� is the probability that the input ripple size is r and all the batches are

decodable for a BATS code with n0 batches at time t .

For a given number n > 0, the above theorem provides us a new representation of Pstop.�jn/

in terms of ƒ
.t/
n0 Œ0; 0� for n0 D 0; 1; : : : ; n, and a recursive formula given by (7.7) and (7.8) to cal-

culate ƒ
.t/
n0 Œ0; W� for t D 0; 1; : : : ; K and n0 D 1; : : : ; n. To evaluate the formulae in the above the-

orem, we first use (7.7) to calculate ƒ
.0/
i Œ0; W� for i D 0; 1; : : : ; n. For t > 0, we use the following

recursive formulae induced by (7.8) to calculate ƒ
.t/
i Œ0; W� for i D 0; 1; : : : ; n:

ƒ
.t/
0 Œ0; W� D

 
0

0

!
ƒ

.t�1/
0 Œ0; 1W�.ptQt /

0

ƒ
.t/
1 Œ0; W� D

 
1

0

!
ƒ

.t�1/
1 Œ0; 1W�.ptQt /

0
C

 
1

1

!
ƒ

.t�1/
0 Œ0; 1W�.ptQt /

1

ƒ
.t/
2 Œ0; W� D

 
2

0

!
ƒ

.t�1/
2 Œ0; 1W�.ptQt /

0
C

 
2

1

!
ƒ

.t�1/
1 Œ0; 1W�.ptQt /

1
C

 
2

2

!
ƒ

.t�1/
0 Œ0; 1W�.ptQt /

2

:::

ƒ.t/
n Œ0; W� D

 
n

0

!
ƒ.t�1/

n Œ0; 1W�.ptQt /
0

C

 
n

1

!
ƒ

.t�1/
n�1 Œ0; 1W�.ptQt /

1
C : : : C

 
n

n

!
ƒ

.t�1/
0 Œ0; 1W�.ptQt /

n:

This theorem is more convenient to use when we want to calculate Pstop.�jn0/ for n0 D 1; : : : ; n,
which has the same complexity O.K2M 2 C K2n2M/ as calculating Pstop.�jn/ only using Theo-
rem 7.1.

7.2.2 POWER-SUMFORMULA
The matrix Qt defined in Theorem 7.1 is upper-triangular. The following lemma, proved in
Appendix D.2, shows that Qt is also diagonalizable.

Lemma 7.10 The matrix Qt is diagonalizable, i.e.,

Qt D UtDtU�1
t ;

where Dt is a diagonal matrix with Dt Œi; i � D Qt Œi; i �, Ut is an upper-triangular matrix
with Ut Œi; j � D

�
K�t�i

j �i

�
for i � j , and U�1

t is an upper-triangular matrix with U�1
t Œi; j � D

.�1/j �i
�

K�t�i
j �i

�
for i � j .

In the above decomposition, the degree and rank distributions only affect Dt , i.e., the
eigenvalues of Qt . The matrix Ut depends only on K and t . We also notice that Ut Œ1W; 1W� D
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UtC1 and U�1
t Œ1W; 1W� D U�1

tC1. Substituting the above decomposition of Qt into Theorem 7.8,
we obtain another formula for Pstop.t jn/ with a power-sum form.

Theorem 7.11 For n � 0 and t � 0,

Pstop.t jn/ D

2t �1X
iD0

Vt;i Œ0�

 
1 �

tX
�D0

p� C �t;i Œ0; 0�

!n

;

where row vector Vt;i and diagonal matrix �t;i are defined as follows:

1. V0;0 , U0Œ0; W� and �0;0 , p0D0,

2. For t � 0 and i D 0; 1; : : : ; 2t � 1,

VtC1;i D Vt;i Œ1W�;

�tC1;i D �t;i Œ1W; 1W� C ptC1DtC1; (7.9)
VtC1;2t Ci D �Vt;i Œ0�Ut Œ0; 1W�;

�tC1;2t Ci D �t;i Œ0; 0�I C ptC1DtC1:

Proof. This theorem can be proved by substituting the diagonal decomposition of Qt in
Lemma 7.10 into Theorem 7.8. The details can be found in Section D.3. �

The formula in Theorem 7.11 is a linear combination of 2t n-th powers, where the number
of batches n appears only in the power, but in neither Vt;i nor �t;i . It is now easy to see that
Pstop.t jn/ decreases exponentially with n, which will be made explicit in the next subsection.
Note that Vt;i Œ0� are integers determined by K, t , and i , but not n, and can be both positive and
negative. According to the definition, we also know that for t D 0; 1; : : : ; K � 1,

0 <

tX
�D0

p� � �t;i Œ0; 0� < 1:

We prefer Theorem 7.8 to Theorem 7.11 for numerical evaluation for two reasons. First,
because of the 2t n-th power for t D 0; 1; : : : ; K in the formula for Pstop.t jn/ in Theorem 7.11,
the computation complexity increases exponentially with K. Second, the absolute value of Vt;i Œ0�

can be very large, so that the accuracy of the numerical evaluation is difficult to guarantee if we
use a fixed number of significant digits.
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7.2.3 ERRORPROBABILITYANDERROREXPONENT
For BP.n/, we say a decoding error occurs if the decoder cannot recover all the K input symbols,
i.e., the decoder stops before time K. Hence, the corresponding error probability is

Perr.n/ D

K�1X
tD0

Pstop.t jn/ D 1 � Pstop.Kjn/:

Using Theorem 7.8, we can calculate Perr.n/ efficiently.
The asymptotic decrease rate of the error probability of BP.n/ with respect to n can be

characterized using the BP error exponent of BATS codes defined as

EEBP D lim
n!1

� log.Perr.n//

n
:

For 0 � t � K, define

qt D 1 �

tX
�D0

p� C �t;0Œ0; 0�: (7.10)

Referring to the power-sum formula for Pstop.t jn/ in Theorem 7.11, the first summand on the
RHS is Vt;0Œ0�qn

t . Applying (7.9) iteratively, we obtain

�t;0Œ0; 0� D

tX
�D0

p�D� Œt � �; t � ��:

Here, D� Œt � �; t � �� is the probability that a batch decodable for the first time at time � does
not increase the input ripple size when the input ripple size is t � � at time � .

Recall the definition of rBP above Lemma 7.3. The following theorem enables us to char-
acterize the BP error exponent.

Theorem 7.12 Suppose that a batch is decodable at time 0 with positive probability. We have

1. Pstop.0jn/ D qn
0 ;

2. for 1 � t < rBP, Pstop.t jn/ D 0 for all n � 1; and

3. for t � rBP,

lim
n!1

� log Pstop.t jn/

n
D � log qt :

Proof. This theorem is derived using Theorem 7.11. See the details in Appendix D.3. �
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Remark 7.13 The above theorem says that Vt;0qn

t is the dominating term of Pstop.t jn/ when
n is large.

Corollary 7.14 When a batch is decodable at time 0 with positive probability, the BP error exponent
of BATS codes satisfies

EEBP D � log q�;

where q� , q0 _ ._K�1
tDrBP

qt / D _K�1
tD0 qt .

Proof. The corollary follows the above theorem and Perr.n/ D
PK�1

tD0 Pstop.t jn/. The equality
q0 _ ._K�1

tDrBP
qt / D _K�1

tD0 qt follows by q0 � qt for t < rBP. (By checking the proof of Theo-
rem 7.12, we know qt D 1 �

Pt
�D0 p� for t < rBP.) �

Recall that qt , t D 0; 1; : : : ; K � 1, are all functions of ‰ . Since max‰ EEBP D

� log min‰ q�, we can obtain the maximum BP error exponent by solving min‰ q� as the fol-
lowing linear program for given K and the rank distribution:

min
‰;x

x

s.t. qt � x; t D 0; 1; : : : ; K � 1:
(7.11)

The variables in the above optimization are the degree distribution and x.

7.2.4 NUMBEROFBATCHESCONSUMED
We now consider the decoder BP� described in Section 2.3.2. We are interested in the number
of batches consumed when BP� decodes all the input symbols, which is denoted by NBP� . We
assume that a batch is decodable at time 0 with positive probability in this subsection, since
otherwise BP� does not stop.

It is possible to characterize the distribution of NBP� using the error probability of BP.n/.
The event NBP� � n is the same as the event that BP.n � 1/ stops with less than K input symbols
decoded. So we have for n � 1,

PrfNBP� � ng D Perr.n � 1/: (7.12)

By (7.12), we can write

EŒNBP� � D

1X
nD1

n PrfNBP� D ng D

1X
nD1

PrfNBP� � ng D

1X
nD0

Perr.n/: (7.13)

Using the fact that Perr.n/ decreases exponentially fast as n is large (see Corollary 7.14), we know
that EŒNBP� � < 1.
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The coding overhead of a BATS code is defined as

CO D

NBP�X
iD1

rk.Hi / � K:

We are interested in the expected coding overhead

EŒCO� D EŒNBP� � EŒrk.H/� � K D EŒNBP� � Nh � K;

where the first equality holds by Wald’s equation.2
For given K and Nh, we can calculate EŒNBP� � and then obtain EŒCO�. The next theorem

gives another formula for EŒNBP� �.

Theorem 7.15

EŒNBP� � D

K�1X
tD0

2t �1X
iD0

Vt;i Œ0�Pt
�D0 p� � �t;i Œ0; 0�

: (7.14)

Proof. By (7.13), we have EŒNBP� � D
PK�1

tD0

P1

nD0 Pstop.t jn/. The proof is completed by ap-
plying Theorem 7.11:

1X
nD0

Pstop.t jn/ D

1X
nD0

2t �1X
iD0

Vt;i Œ0�

 
1 �

tX
�D0

p� C �t;i Œ0; 0�

!n

D

2t �1X
iD0

Vt;i Œ0�Pt
�D0 p� � �t;i Œ0; 0�

:

�

We prefer (7.13) to (7.14) for numerical evaluations. Fix a sufficiently large integer n2,
and we can approximate EŒNBP� � by

EŒNBP� � �

n2X
nD0

Perr.n/: (7.15)

The approximation error is exponentially small in terms of n2 (implied by Corollary 7.14).
2The following sufficient conditions for Wald’s equation [84] can readily be verified:

1. rk.Hi /, i D 1; 2 : : : are i.i.d and all have the same finite absolute expectation Nh;
2. NBP� is a stopping time of frk.Hi /g (i.e., the event fNBP� � ng depends only on the first n � 1 batches);
3. EŒNBP� � < 1.

This set of conditions are sufficient to show that EŒ
PNBP�

iD1
rk.Hi /� D EŒNBP� � Nh (see [7] for a proof ).
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7.3 POISSONNUMBEROFBATCHES
In this section, we study the stopping time of BP. QN / where QN is a Poisson random variable,
i.e., the number of batches used by the BP decoder follows a Poisson distribution. In network
communications, the number of received packets in a given time interval is very often modeled
by a Poisson distribution. Therefore, the Poisson model for the number of the batches is useful
for evaluating the performance of BATS code in such network models. In addition, the analysis
of BP. QN / will provide an alternative formula for calculating EŒNBP� �.

7.3.1 RECURSIVE FORMULAE
The Poisson random variable QN can be represented by its expectation Nn, with

Pr
˚

QN D n
	

D
Nnn

nŠ
e� Nn:

For any integer t (0 � t � K) and real value Nn > 0, define a row-vector Qƒ
.t/
Nn of length K � t C 1

as
Qƒ

.t/
Nn Œr� ,

X
n

Pr
˚

QN D n
	

Pr
n
R.t/

n D r; R.�/
n > 0; � < t

o
; r D 0; 1; : : : ; K � t:

According to the definition in (7.1), we have

Qƒ
.t/
Nn D

X
n

Prf QN D ng

nX
cD0

ƒ.t/
n Œc; W�: (7.16)

Denote by QPstop.t j Nn/ the probability that BP. QN / stops at time t , where EŒ QN � D Nn. We see that

QPstop.t j Nn/ D Qƒ
.t/
Nn Œ0� D

X
n

Prf QN D ngPstop.t jn/; (7.17)

where the second equality follows from (7.2) and (7.16). The above formula for QPstop.t j Nn/ can
be calculated using Theorem 7.8 with complexity O.K2M 2 C K2n2

maxM/ of real number op-
erations, where we use the first nmax summands for approximation. Due to the fast decrease of
Prf QN D ng when n > Nn, we may choose nmax such that

P1

nDnmaxC1 Prf QN D ng is small, which
gives an upper bound on the approximation error tolerance.

In the following, we show that Qƒ
.t/
Nn can be expressed using a different formula, which

provides a new perspective on the quantity Qƒ
.t/
Nn and a simpler method of evaluating QPstop.t j Nn/

than (7.17) for certain cases. Define the matrix exponential exp.A/ for a square matrix A as

exp.A/ ,
1X

iD0

Ai

i Š
:
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Theorem 7.16 Consider BP decoding of a BATS code with K input symbols, degree distribution ‰ ,
and transfer matrix rank distribution h. When the number of batches used by BP decoding is Poisson
distributed with expectation Nn, for any integer t � 0,

Qƒ
.t/
Nn D Qƒ

.t�1/
Nn Œ1W� exp . Nnpt .Qt � I// ; (7.18)

where Qƒ�1
Nn Œ1W� , e0.

Proof. We show the proof of (7.18) for t D 0 here. The remainder of the proof can be found in
Appendix D.4. Substituting Prf QN D ng and ƒ

.0/
n Œc; W� given in Theorem 7.1, we have

Qƒ
.0/
Nn D

X
n

Nnn

nŠ
e� Nn

X
c�n

Bi.cI n; 1 � �0/e0Qn�c
0

D
X

c;nWc�n

Nnn

nŠ
e� Nn

 
n

c

!
.1 � �0/c.�0/n�ce0Qn�c

0

D e� Nne0

X
c;nWc�n

. Nn.1 � �0//c

cŠ

. Nn�0Q0/n�c

.n � c/Š
:

By defining m D n � c and using matrix exponential, we can further simplify the above formula
as

Qƒ
.0/
Nn D e� Nne0

X
c

. Nn.1 � �0//c

cŠ

X
m

. Nn�0Q0/m

mŠ

D e� Nne0 exp. Nn.1 � �0// exp. Nn�0Q0/

D e0 exp.�Nn�0/ exp. Nn�0Q0/

D e0 exp. Nn�0.Q0 � I//; (7.19)

where the last equality is obtained using the fact that exp.A/ exp.B/ D exp.A C B/ whenever
AB D BA. �

The formula provided in the above theorem involves only the distribution of the number
of decodable input symbols at each time. In other words, for a Poisson number of batches, it is
not necessary to consider the joint distribution of the number of decodable input symbols and
the number of undecodable batches as in Theorem 7.1.

7.3.2 EVALUATIONAPPROACHES
To evaluate the formula in Theorem 7.16, we need to calculate the matrix exponential efficiently,
which has been extensively studied (see [53] for a survey). We will discuss two approaches for
evaluating the formula in Theorem 7.16. One of the widely used approaches for calculating
matrix exponential is the scaling and squaring method [20], which has been implemented in
many numerical computing environments (e.g., the expm function in Matlab). For a square
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matrix A, the computational cost of the algorithm in [20] for computing exp.A/ is O.log kAk1/

matrix multiplications (of size A) with the truncation error no larger than a specified toler-
ance (e.g., the unit roundoff or 2�32). Recall that the complexity for computing the quantities
fpt;s; ptQtg0�t�K;0�s�M is O.K2M 2/. Since each row of thematrix Qt has at most M C 1 non-
zero entries, the computational cost of the algorithm in [20] for computing exp . Nnpt .Qt � I// is
O.KM log Nn/. Taking into account of the vector-matrix multiplication, the overall complexity
for computing QPstop.t j Nn/, t D 0; 1; : : : ; K is O.K2M 2 C K2M log Nn C K3/ real number opera-
tions.

Now we discuss another approach. What we are calculating in (7.18) is a vector multi-
plying the matrix exponential, also called an action of the matrix exponential. In general, for
a row vector v and a square matrix A, the computation of v exp.A/ can be done by O.kAk1/

multiplications of a vector with matrix A, using the algorithm in [3]. So for our case, the overall
complexity for computing QPstop.t j Nn/, t D 0; 1; : : : ; K is O.K2M 2 C K2M Nn/ real number oper-
ations, taking the structure of Qt into consideration. When Nn is relatively small, we would prefer
the approach using the action of the matrix exponential, while when Nn is large, we would choose
the first approach to compute the matrix exponential directly.

We may want to evaluate QPstop.t j Nn/ for Nn 2 fi Nn0 W i D 1; : : : ; imaxg, where Nn0 is
a small number (e.g., 1 or 0:5). In this case, we calculate the matrix exponential
exp . Nn0pt .Qt � I// directly with complexity O.KM/ using the algorithm in [20]. Then, we cal-
culate exp .i Nn0pt .Qt � I// for i D 1; : : : ; imax recursively using

exp .i Nn0pt .Qt � I// D .exp . Nn0pt .Qt � I///i :

The overall complexity for computing QPstop.t j Nn/, t D 0; 1; : : : ; K, Nn 2 fi Nn0 W i D 1; : : : ; imaxg is
O.K2M 2 C K3imax/ real number operations.

7.3.3 ERRORPROBABILITYANDEXPONENT
Similar to Theorem 7.12, we have the following characterization of QPstop.t j Nn/. Recall rBP defined
above Lemma 7.3, and qt defined in (7.10).

Theorem 7.17 Suppose a batch is decodable at time 0 with positive probability. We have:

1. QPstop.0j Nn/ D exp.�Nn.1 � q0//;

2. for 1 � t < rBP, QPstop.t j Nn/ D 0; and

3. for t � rBP,

lim
Nn!1

� log QPstop.t j Nn/

Nn
D 1 � qt :
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Proof. Using Theorem 7.11 and (7.17), we obtain

QPstop.t j Nn/ D

2t �1X
iD0

Vt;i Œ0�
X

n

Nnn

nŠ
e� Nn

 
1 �

tX
�D0

p� C �t;i Œ0; 0�

!n

D

2t �1X
iD0

Vt;i Œ0� exp
 

�Nn

 
tX

�D0

p� � �t;i Œ0; 0�

!!
:

The proof then follows similarly as the one of Theorem 7.12 and the details are left to Ap-
pendix D.4. �

Let QPerr. Nn/ , 1 � QPstop.Kj Nn/, i.e., the probability that BP. QN / cannot recover all the input
packets. Recall that q� D _K�1

tD0 qt .

Corollary 7.18

lim
Nn!1

� log QPerr. Nn/

n
D 1 � q�:

Proof. The proof is similar to that of Corollary 7.14 except that Theorem 7.17 instead of Theo-
rem 7.12 is applied, and hence it is omitted. �

7.3.4 ANOTHERFORMULAFOR EŒNBP� �

We can use QPerr. Nn/ to characterize EŒNBP� �, the expected number of batches consumed by BP�.

Theorem 7.19

EŒNBP� � D

Z 1

0

QPerr.x/ dx D

K�1X
tD0

Z 1

0

Qƒ.t/
x Œ0� dx:

Proof. We have Z 1

0

QPerr.x/ dx D

Z 1

0

PK�1
tD0

QPstop.t jx/ dx

D

Z 1

0

PK�1
tD0

P
n

xn

nŠ
e�xPstop.t jn/ dx

D

Z 1

0

X
n

xn

nŠ
e�xPerr.n/ dx

D
X

n

Perr.n/

nŠ

Z 1

0

xne�x dx

D
X

n

Perr.n/ D EŒNBP� �;
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where the change of the order of the integral and the infinite sum follows from the mono-
tone convergence theorem and the second last step follows because the integral is the Gamma
function of order n C 1 and is equal to nŠ. �

Compared with the formulae for EŒNBP� � in (7.13) in the form of a summation, the
formula here is in the form of an integration. When QPerr. Nn/ is easier to obtain than Perr.n/, the
new formula may have certain advantage for numerical evaluation.

Checking the proof of the above theorem, we see that the equivalence of these two for-
mulae depends only on the properties of the Poisson distribution, but not on the underlaying
distribution of NBP� . In general, let bn be an infinite sequence such that bn � 0 and

P1

nD0 bn

exists. Define Qb.x/ D
P

n
xne�x

nŠ
bn. Then we haveZ 1

0

Qb.x/ dx D

Z 1

0

X
n

xne�x

nŠ
bn dx D

X
n

bn

nŠ

Z 1

0

xne�x dx D
X

n

bn

nŠ
nŠ D

X
n

bn:

7.4 FINITE-LENGTHDEGREE-DISTRIBUTION
OPTIMIZATION

In this section, we demonstrate how to use the formulae to optimize the degree distribution for
finite block lengths.

7.4.1 AGENERAL FRAMEWORK
Let first discuss a general framework for optimizing the degree distributions for finite-length
BATS/fountain codes, which has two steps in each iteration with an initial degree distribution
‰ .0/. For the i-th iteration, i D 0; 1; : : : ;

1. find one or multiple new degree distributions which may be potentially better than ‰ .i/;
and

2. evaluate the BP decoding performance of these new degree distributions in terms of an
objective function, and select the degree distribution that outperforms ‰ .i/ the most as
‰ .iC1/.

The above framework has been used in the design of LT/Raptor codes. For example,
in the design of finite-length Raptor codes discussed in [68], the first step is achieved by a
heuristic bound on the input ripple size, and the second step is performed by means of the
exact calculation of the error probability. In one of the optimizations performed in [8], a robust
soliton distribution is sampled at the first step, and a heuristic formula of the expected number
of inactivation is evaluated at the second step.

We adopt this framework to optimize the degree distribution of a finite-length BATS
code. We can use Perr.n/, EŒNBP� � or other characteristics as the objective function. The choice
of the objective function f .‰/ will be discussed in the next subsection. Here we first introduce
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an approach to update the degree distribution in each iteration. The initial degree distribution
‰ .0/ D ‰asy is obtained from the asymptotic analysis (see Chapter 6). In each iteration, a new
degree distribution ‰ .iC1/ is obtained:

‰ .iC1/
D

‰ .i/ C ıiedi �1

1 C ıi

; (7.20)

where di 2 f1; 2; : : : ; Kg, ıi 2 Œ�‰ .i/Œdi � 1�; 1/, and ed�1 is the all-zero vector except that
the .d � 1/-th component is 1. We try to pick di and ıi such that ‰ .iC1/ reduces the objective
function by the largest amount, which depends on the evaluation of our iterative formulae.

In our experience, this approach converges to a degree distribution that is significantly
better than ‰asy after several iterations. Since our objective functions are not convex in gen-
eral, we cannot guarantee the convergence to the global minimum. Moreover, our approach is
a version of coordinate descent that selects the “best” coordinate (degree) that can reduce the ob-
jective function by the largest amount to update. In some other coordinate descent algorithms,
the coordinate (degree) is selected sequentially or randomly. In practice, our approach in (7.20)
converges much faster than random or sequential selection of degrees, with the computational
cost of selecting the “best” coordinate taken into consideration. As discussed in [57], it may be a
general phenomenon that coordinate descent converges faster by selecting the “best” coordinate
than random selection.

Note that our purpose here is to illustrate the applications of the formulae obtained in this
monograph, but not to propose an optimization approach for practical use. How to optimize
the degree distribution for practical applications is beyond the scope of this monograph.

7.4.2 CHOICEOFTHEOBJECTIVE FUNCTION
Suppose we want to have a degree distribution that has a smaller expected coding overhead than
‰asy. To compare the two degree distributions in the second step of our optimization framework,
we may use (7.15) to evaluate EŒNBP� � which is accurate enough if a large value of n2 is used.
But it is indeed not necessary to evaluate EŒNBP� � accurately in the second step. To make the
evaluation in the second step faster, we instead use QPerr. Nn/ (with a properly chosen value of Nn)
as a proxy of EŒNBP� �.

As hinted by Proposition 7.20 and observed in numerical evaluations, Perr.n/ is very close
to 1 when n < K= Nh. So we have the approximation that

EŒNBP� � ' n1 C

n2X
nDn1

Perr.n/;

where n1 D dK=
P

i hie and n2 is a sufficiently large integer. We only need to pick n2 such
that

P1

nDn2C1 Perr.n/ is sufficiently small for the desired degree distributions. For other degree
distributions such that

P1

nDn2C1 Perr.n/ is large, the above approximation is roughly a lower
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bound on the expected coding overhead, which is sufficient for our purpose of comparison.
Similarly, we have the approximation

QPerr. Nn/ '
n1�1X
nD0

Nnne� Nn

nŠ
C

n2X
nDn1

Nnne� Nn

nŠ
Perr.n/:

The first terms in the approximations of EŒNBP� � and QPerr. Nn/ are constants. Since the p.m.f. of
the Poisson distribution exhibits relatively small changes for the probability masses around its
expectation, we can choose Nn D .n1 C n2/=2 and expect that EŒNBP� � and QPerr. Nn/ share a similar
trend when the degree distribution changes.

7.4.3 EVALUATIONS FORBPDECODING
Weuse an example to demonstrate the evaluation results of the formulae in this section. Consider
a BATS code with K D 256, q D 256, M D 16 and the rank distribution in Table 7.1. The rank
distribution is the one of the length-2 homogeneous line network with link erasure probability
0:2 (see [97, Section VII-A] for a formula for the rank distribution). Here Nh D 11:91 is an upper
bound on the achievable rates of BATS codes (in terms of packet per batch).

Table 7.1: The rank distribution for the evaluation examples. Here the BATS code has q D 256

and M D 16. The value of h0 is 0 and is omitted in the table.

h1 h2 h3 h4 h5 h6 h7 h8

0 0 0 0 0.0001 0.0004 0.0025 0.0110

h9 h10 h11 h12 h13 h14 h15 h16

0.0387 0.1040 0.2062 0.2797 0.2339 0.1038 0.0190 0.0008

We obtain three degree distributions ‰asy, ‰BP, and ‰mee for this BATS code, which are
given in Table 7.2.

• ‰asy is obtained by solving the degree-distribution optimization problem induced by the
asymptotic analysis of BATS code in [97].

• ‰mee is obtained by solving (7.11), which maximizes the BP error exponent.

• ‰BP is obtained using the finite-length degree distribution optimization approach de-
scribed in Section 7.4.1 and 7.4.2, with ‰asy as the initial degree distribution and QPerr.40/

as the objective function.

From Table 7.2, we first observe that all these degree distributions are very sparse in the
sense that most of the degrees have zero probability.Moreover, the supports of these three degree
distributions largely overlap with each other. For the three degree distributions, we compare



124 7. FINITE-LENGTHANALYSISOFBPDECODING
them in terms of the average degree, BP error exponent, EŒNBP� � and EŒCO� in Table 7.3, and
we also evaluate the error probability of BP.n/, n D 1; : : : ; 200 (see Figure 7.1)

Table 7.2: Degree distributions for the rank distribution in Table 7.1. For the first three degree
distributions, we give the values of the same set of probability masses, that include all the positive
probability masses of these distributions. For the forth degree distribution, only the positive
probability masses are listed.

Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 Ψ20 Ψ21 Ψ26 Ψ27

0 0 0 0.0467 0.2502 0.1079 0.0781 0 0.0350

Ψ28 Ψ37 Ψ38 Ψ50 Ψ51 Ψ72 Ψ116 Ψ117 Ψ256

0.0968 0.0728 0.0199 0.0676 0.0087 0.0679 0.0277 0.0312 0.0896

Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 Ψ20 Ψ21 Ψ26 Ψ27

0.0826 0.0734 0.0550 0.0429 0.1745 0.0348 0.0809 0 0.0321

Ψ28 Ψ37 Ψ38 Ψ50 Ψ51 Ψ72 Ψ116 Ψ117 Ψ256

0.0888 0.0484 0.0183 0.0620 0.0080 0.0623 0.0254 0.0286 0.0822

Ψ10 Ψ70 Ψ71 Ψ110 Ψ115 Ψ165 Ψ265

0.4584 0.0063 0.0706 0.0112 0.0650 0.0751 0.3135

asy

asy

BP

BP

mee meemee mee mee mee mee

BP

BP

BP

BP

BP

BP

BP

BP

BP

BP

BP

BP

BP

BP

BP

BP

asy

asy

asy

asy

asy

asy

asy

asy

asy

asy

asy

asy

asy

asy

asy

asy

(a) Ψasy: the degree distribution obtained using the asymptotic analysis.

(b) ΨBP: the degree distribution obtained by modifying Ψasy using the approach introduced in 
     Section 7.4.1 for BP coding.

(c) Ψmee: the degree distribution that maximizes the asymptotic decrease rate of error probability
     (and the number of inactivations) obtained by solving (7.11).

Table 7.3: Performance comparison of the three degree distributions given in Table 7.2

Degree 

Distribution

Average 

Degree
EEBP E[NBP*] E[CO]

Ψasy 53.8 0.0107 >97 >898

ΨBP 49.3 0.1475 32.0 125.6

Ψmee 111.1 0.5692 82.5 727.1

We first observe that for all the degree distributions, the error probability decreases ex-
ponentially fast in n when n is large, which matches the findings in Section 7.2.3. For ‰mee,
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the BP error decrease rate is the fastest asymptotically among these three distributions. We also
observe that the error probability is almost one for small n. For a general degree distribution,
the error probability for all n < K= Nh can be lower bounded as follows.

Proposition 7.20 For any n < K= Nh,

Perr.n/ � 1 � exp
 

�
1

3

�
K

n Nh
� 1

�2 Nh

M
n

!
:

Proof. We have

Perr.n/ � Pr
(

nX
iD1

rk.Hi / < K

)
D 1 � Pr

(
nX

iD1

rk.Hi / � K

)
;

where rk.Hi /; i D 1; : : : ; n are independent random variables with generic distribution h. The
proof is an application of the Chernoff bound. �

When K is sufficiently large, the above lower bound is close to 1. For relatively small
values of k, the lower bound is loose. For this example, K= Nh D 21:49. The bound in the above
proposition gives Perr.21/ � 0:0029, but our evaluations show that Perr.21/ D 1:0 for all the
three degree distributions.

From Figure 7.1b, we observe that ‰BP has the lowest error probability for n from 25 to
50. For example, if we want to achieve an error probability 0:01, it is sufficient to use n D 47 for
‰BP. Unless we desire an extremely low error probability, e.g., 10�14, ‰BP is preferred for BP
decoding. It is not surprising that the degree distribution obtained from the asymptotic analysis
does not perform well for short block lengths.

The BP error exponents of the three degree distributions are given in Table 7.3. Actually,
‰mee is the degree distribution that achieves the optimal value of (7.11) for K D 256, q D 256

and the rank distribution in Table 7.1.
The values of EŒNBP� � and the expected coding overhead of the three degree distributions

can be found using the approximation in (7.15). The trend of
Pn2

nD0 Perr.n/ when n2 increases
can be found in Figure 7.2. We see that for both ‰BP and ‰mee, the approximation converges fast
due to the fast decrease of the corresponding error probability Perr.n/. For the range of n2 in the
evaluation, the value of

Pn2

nD0 Perr.n/ does not converge for ‰asy. But the value of
Pn2

nD0 Perr.n/

for ‰asy provides a lower bound for EŒNBP� � that is sufficient for us to compare these three
degree distributions in terms of EŒNBP� �.

We also evaluate QPerr. Nn/ for the degree distribution ‰BP and compare it with Perr.n/.
From the illustration in Figure 7.3, we first observe that the two curves are similar except for the
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Figure 7.1: Perr.n/ for different degree distributions. Here K D 256, q D 256 and the rank dis-
tribution is given in Table 7.1. For this example, K= Nh D 21:49, which is illustrated by the vertical
line marked by K= Nh in the figures.
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Figure 7.2: The trends of
Pn2

nD0 Perr.n/ when n2 increases for the three degree distributions given
in Table 7.2.

different decrease rates. QPerr. Nn/ decreases slightly slower than Perr.n/ which is consistent with
our characterization that

lim
n!1

� log.Perr.n//

n
D � log q�

� 1 � q�
D lim

Nn!1

� log QPerr. Nn/

Nn
:

Further, from the two formulae for EŒNBP� � in terms of Perr.n/ and QPerr. Nn/, respectively, we
know that the areas below the two curves in Figure 7.3 are both EŒNBP� �.
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InactivationDecoding
The decoding of a BATS code is essentially solving a linear system of equations. Although Gaus-
sian elimination can guarantee the success when the linear system of equations is uniquely solv-
able, its computational cost is high even when the number of input packet is not very large.
In this chapter, we study inactivation decoding, which combines Gaussina elimination with BP
decoding, can reduce the coding overhead compared with using BP decoding alone.

8.1 INTRODUCTIONOF INACTIVATIONDECODING

Inactivation decoding was proposed for LT/Raptor codes [67, 69] and can be regarded as an
efficient way to solve sparse linear systems [34, 59], and a similar algorithm [63] has been used
for efficient encoding of LDPC codes. Here we describe how to use inactivation decoding for
BATS codes.

In the BP decoding algorithm discussed in Section 2.3, the decoding stops when no de-
codable input symbols remain. Although BP decoding stops, Gaussian elimination can still be
used to decode the remaining input symbols (by combining the linear systems associated with the
undecoded batches to a single linear system involving all the undecoded input symbols). How-
ever, the decoding complexity of Gaussian elimination is much higher than that of BP decoding.
Inactivation decoding is a technique that efficiently combines BP decoding and Gaussian elim-
ination.

We first describe an inactivation decoding process for a given number n of batches, de-
noted by INAC.n/. The decoding of INAC.n/ is the same BP.n/ until there are no more decod-
able symbols. Instead of stopping the decoding as in BP.n/, INAC.n/ tries to resume the BP
decoding process by “inactivating” certain undecoded input symbols. Specifically, suppose there
are no decodable input symbols at time t . Then INAC.n/ randomly picks an undecoded symbol
b and marks it as inactive. The decoder substitutes this inactive symbol b into the batches like
a decoded symbol, except that b is an indeterminate. The time index is then increased by one.
For example, if the k-th input symbol bk is inactivated at time t and k 2 A

.t/
i , each component

of Y.tC1/
i D Y.t/

i � bkgHi will be expressed as a linear polynomial in bk . Since the time index is
increased by one for each input symbol decoded or inactivated, the decoding process of INAC.n/

is repeated until time K when all the input symbols are either decoded or inactivated.
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Denote by I the number of inactive symbols when INAC.n/ stops, and denote by

b1; : : : ; bI the inactive input symbols. A decoded input symbol b can now be expressed as

b D

IX
iD1

˛ibi C ˛0;

where ˛i (0 � i � I ) are determined by the decoding process. Note that for an input symbol b

decoded before BP(n) stops, the coefficients ˛i for all i are equal to 0, i.e., the value of b is
˛0. Therefore, inactivation decoding recovers each decoded input symbol in the form of a linear
formula involving the inactive symbols.

After INAC.n/ stops, we need to recover the inactive symbols and substitute their values
into the formulae of the decoded input symbols. To generate K � I decoded input symbols, the
decoder consumes K � I of all the received symbols. The other received symbols are actually
transformed into linear equations of the inactive symbols, and then used to solve the inactive
symbols. For example, if all the input symbols of a batch is decoded (in terms of the inactive
symbols), the received symbols of this batch cannot be used to decode more input symbols, but
they impose linear constraints on the inactive symbols. Usually, this linear system of inactive
symbols are solved by Gaussian elimination.

The inactive symbols are uniquely solvable if and only if the (global) linear system formed
by the linear systems associated with all the batches is uniquely solvable. When being used with
the precoding techniques of high-density parity-check and per-inactivation, the decoding of the
inactive symbols can be successful with high probability for a small coding overhead. This will
be discussed in Section 8.3.

8.2 FINITE-LENGTHANALYSISOF INACTIVATION
DECODING

Inactivation decoding incurs extra computation cost that includes solving the inactive symbols
using Gaussian elimination and substituting the values of the inactive symbols. Since both the
former and the latter depend on the number of inactive symbols, knowing this number can help
us understand the tradeoff between computation cost and coding rate. In this section, we provide
methods for computing the expected number of inactive symbols, first given in [54, 96, 102].
The analysis to be presented is not associated with any specific precoding technique. Omitted
proofs can be found in Appendix E.

8.2.1 EXPECTEDNUMBEROF INACTIVATION
Since the inactive input symbols are treated as decoded during the inactivation decoding, the
decodability of batches can be defined in the same way as for BP decoding. Let OR

.t/
n and OC

.t/
n be

the number of decodable input symbols and the number of undecodable batches, respectively,
at time t when using INAC.n/. From the description of inactivation decoding, the probability
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that a symbol is inactivated at time t < K is

Pinac.t jn/ , Prf OR.t/
n D 0g: (8.1)

At time K, the decoding stops (all the input symbols are either decoded or inactive). The expec-
tation of the number of inactive symbols can be expressed as

EŒI jn� D

K�1X
tD0

Pinac.t jn/:

Define an .n C 1/ � .K � t C 1/ matrix �
.t/
n as

� .t/
n Œc; r� , Pr

n
OC .t/
n D c; OR.t/

n D r
o

:

According to the definition in (8.2), we can write

Pinac.t jn/ D

nX
cD0

� .t/
n Œc; 0�: (8.2)

Define Nt as a .K � t C 2/ � .K � t C 1/ matrix of the form
�
e0

I

�
, so that

� .t�1/
n Œc; W�Nt D .� .t�1/

n Œc; 0� C � .t�1/
n Œc; 1�; � .t�1/

n Œc; 2 W K � t C 1�/:

The following theorem provides an iterative formula for �
.t/
n , t D 0; 1; : : : ; K.

Theorem 8.1 Consider a BATS code with K input symbols, n batches, degree distribution ‰ , rank
distribution h of the transfer matrix, and batch size M . We have for inactivation decoding

� .0/
n Œc; W� D Bi.cI n; 1 � �0/e0Qn�c

0 ; (8.3)

and for t > 0,

� .t/
n Œc; W� D

nX
c0Dc

Bi.cI c0; 1 � �t /�
.t�1/
n Œc0; W�NtQc0�c

t : (8.4)

Proof. The proof is similar to that of Theorem 7.1. �
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If we replace Nt by
�
0
I

�
of proper dimension, the above theorem becomes Theorem 7.1.

Due to this similarity, many discussions about BP decoding based on Theorem 7.1 apply to inac-
tivation decoding as well. For example, the following formula is simpler for evaluating Pinac.t jn/

for a range of n.

Theorem 8.2 For n � 0 and t � 0,

Pinac.t jn/ D

nX
cD0

 
n

c

! 
1 �

tX
�D0

p�

!c

� .t/
n�cŒ0; 0�; (8.5)

where the first row of the matrices �
.t/
n0 , n0 D 0; 1; : : : ; n can be computed by the following recursion:

For n0 D 0; 1; : : : ; n,
�

.0/
n0 Œ0; W� D .p0Q0/n0

Œ0; W�; (8.6)

and for t > 0

�
.t/
n0 Œ0; W� D

n0X
cD0

 
n0

c

!
�

.t�1/
n0�c Œ0; W�Nt .ptQt /

c : (8.7)

Proof. The proof is similar to that of Theorem 7.8. �

The formula in the above theorem can be evaluated in a way similar to the one in The-
orem 7.8. Similar to Pstop.t jn/, Pinac.t jn/ can also be expressed as the linear combination of 2t

n-th powers.

Theorem 8.3 For n � 0 and t � 0,

Pinac.t jn/ D

2t �1X
iD0

V0
t;i Œ0�

 
1 �

tX
�D0

p� C �t;i Œ0; 0�

!n

;

where matrix �t;i is defined in Theorem 7.11, and row vector V0
t;i is defined as follows.

1. V0
0;0 , U0Œ0; W�.

2. For t � 0 and i D 0; 1; : : : ; 2t � 1,

V0
tC1;i D V0

t;i Œ1W�;

V0
tC1;2t Ci D V0

t;i Œ0�.UtC1Œ0; W� � Ut Œ0; 1W�/:

Proof. The proof is similar to that of Theorem 7.11. �
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Recall qt D 1 �
Pt

�D0 p� C �t;0Œ0; 0� (see (7.10)) and the definition of rBP above
Lemma 7.3. Applying Theorem 8.3, we can further obtain the following asymptotic behavior of
Pinac.t jn/ when n is large.

Theorem 8.4 When t < rBP, Pinac.t jn/ D qn
t , and when t � rBP,

lim
n!1

� log Pinac.t jn/

n
D � log qt :

Corollary 8.5

lim
n!1

� log EŒI jn�

n
D � log q�;

where q� D _K�1
tD0 qt .

8.2.2 POISSONNUMBEROFBATCHES
In this subsection, we assume that the number of received batches is a Poisson distributed ran-
dom variable QN with mean Nn. Denote by QI the number of inactive symbols after INAC. QN /

stops.
Define a row vector Q�

.t/
Nn of size K � t C 1 as

Q�
.t/
Nn Œr� , Pr

n
OR

.t/

QN
D r

o
D
X

n

Nnn

nŠ
e� Nn Pr

n
OR.t/

n D r
o

:

Thus,

Q�
.t/
Nn D

X
n

Nnn

nŠ
e� Nn

nX
cD0

� .t/
n Œc; W�: (8.8)

The probability that an input symbol is inactive at time t is

QPinac.t j Nn/ D Q�
.t/
Nn Œ0� D

X
n

Prf QN D ngPinac.t jn/; (8.9)

and hence the expected number of inactive symbols is given by

EŒ QI j Nn� D

K�1X
tD0

QPinac.t j Nn/ D

K�1X
tD0

Q�
.t/
Nn Œ0�: (8.10)
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The next theorem provides a formula for calculating Q�
.t/
Nn .

Theorem 8.6 Consider inactivation decoding of a BATS code with K input symbols, degree distri-
bution ‰ , and transfer matrix rank distribution h. When the number of batches used by BP decoding
is Poisson distributed with expectation Nn, for any integer t � 0

Q�
.t/
Nn D Q�

.t�1/
Nn Nt exp . Nnpt .Qt � I// ;

where Q��1
Nn , e0.

Proof. This theorem can be proved similarly as Theorem 7.16. �

Recall that qt D 1 �
Pt

�D0 p� C �t;0Œ0; 0� (see (7.10)) and the definition of rBP above
Lemma 7.3.

Theorem 8.7 When t < rBP, QPinac.t jn/ D exp.�Nn.1 � qt //, and when t � rBP,

lim
n!1

� log QPinac.t j Nn/

n
D 1 � qt :

Proof. Using Theorem 8.3 and (8.9), we get

QPinac.t j Nn/ D

2t �1X
iD0

V0
t;i Œ0� exp

 
�Nn

 
tX

�D0

p� � �t;i Œ0; 0�

!!
:

The remainder of the proof is similar to that of Theorem 8.4. �

Corollary 8.8

lim
Nn!1

� log EŒ QI j Nn�

Nn
D 1 � q�:
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Table 8.1: The degree distribution ‰ inac obtained by modifying ‰asy using the approach intro-
duced in Section 7.4.1 for inactivation decoding

Ψ11 Ψ12 Ψ13 Ψ14 Ψ15 Ψ20 Ψ21 Ψ26 Ψ27

0 0.0796 0.0973 0.0414 0.2126 0.0955 0.0692 0.0088 0.0309

Ψ28 Ψ37 Ψ38 Ψ50 Ψ51 Ψ72 Ψ116 Ψ117 Ψ256

0.0857 0.0644 0.0176 0.0598 0.0077 0.0512 0.0245 0.0276 0.0262

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

inac

8.2.3 EVALUATIONEXAMPLES
For inactivation decoding, we want to have a degree distribution that has a smaller expected
number of inactivations than ‰asy. To optimize the degree distribution using the approach in-
troduced in Sections 7.4.1 and 7.4.2, we use EŒ QI jn� instead of EŒI jn� as the objective function
to reduce the evaluation time. For the example in Section 7.4.3, ‰ inac is the degree distribution
obtained using this approach, as given in Table 8.1.

We evaluate the inactivation decoding performance of the three degree distributions ‰asy

and ‰mee in Table 7.2 and ‰ inac. We evaluate EŒI jn�, n D 1; : : : ; 200 for the three degree distri-
butions. See Figure 8.1 for an illustration of the evaluation results. We first observe that for all
the degree distributions, the expected number of inactivation decreases exponentially fast when
n is large. For ‰mee, the asymptotic decrease rate of the expected number of inactivation is the
fastest among these three distributions. From Figure 7.1b, we observe that ‰ inac has the smallest
expected number of inactivation for n from 20 to 50. For example, if we use n D 25 for ‰ inac,
the expected number of inactivation is about 17.

We also evaluate EŒ QI j Nn� and compare it with EŒI jn� for degree distribution ‰ inac. From
the illustration in Figure 8.2, we observe that the two curves are similar except for the differ-
ent decrease rates. QPerr. Nn/ decreases slightly slower than Perr.n/ which is consistent with our
characterization that

lim
n!1

� log EŒI jn�

n
D � log q�

� 1 � q�
D lim

Nn!1

� log EŒ QI j Nn�

Nn
:

8.3 PRACTICALDESIGN
In this selection, we discuss how to design the precode and the BATS encoding to increase the
probability that the inactive packets can be decoded.

8.3.1 HIGH-DENSITY PARITYCHECKANDPRE-INACTIVATION
Following the notations in Chapter 2, we formulate BATS encoding with systematic precoding.
We have K 0 input packets given by a T � K 0 matrix B0, and we use a systematic precode with
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Figure 8.1: Expected number of inactivation EŒI jn� for different degree distributions. Here K D

256, q D 256 and the rank distribution is given in Table 7.1. For this example, K= Nh D 21:49,
which is illustrated by the vertical line marked by K= Nh in the figures.
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parity check matrix W D

�
W1

W2

�
, where W1 is a K 0 � .K � K 0/ matrix and W2 is a .K � K 0/ �

.K � K 0/ invertible matrix. Denoting by P the K � K 0 parity-check packets, we have�
B0 P

� �W1

W2

�
D 0;

and hence
P D �B0W1W�1

2 : (8.11)
Following the precoding, the batch encoding process is applied to the K precoded input packets
B D

�
B0 P

�
generated by the precode.

Suppose n batches are received at a destination node with Yi being the received packets
of batch i . We know from (2.1) that

Yi D BiGiHi D B QGiHi ; i D 1; : : : ; n;

where QGi a K � M matrix formed by expanding Gi with the all-zero rows such that BiGi D

B QGi . Let
Z D

�
QG1H1 � � � QGnHn

�
: (8.12)

Then the BATS code decoding is to solve the following system of linear equations with B0 as
the variable �

B0 P
� �Z1 W1

Z2 W2

�
D
�
Y 0

�
; (8.13)

where Y D
�
Y1 � � � Yn

�
and Z1 and Z2 are the first K 0 and the last K � K 0 rows of Z, respec-

tively. By (8.11), we further write (8.13) as

B0A D Y;

where
A D Z1 � W1W�1

2 Z2: (8.14)
The inactivation decoding of BATS codes can be successful if and only if rk.A/ D K 0.

A necessary condition such that rk.A/ D K 0 is
Pn

iD1 rk.Hi / � K 0, since otherwise rk.A/ �

rk.Z/ �
Pn

iD1 rk.Hi / < K 0. Suppose the total rank of all the batches is at least .1 C ı/K 0, ı � 0.
We hope the probability of rk.A/ D K 0 is high. Write

Pr
(
rk.A/ D K 0

ˇ̌̌̌
ˇ nX

iD1

rk.Hi / � .1 C ı/K 0

)
D Pr

˚
rk.A/ D K 0

j rk.Z/ � .1 C ı/K 0
	

Pr
(
rk.Z/ � .1 C ı/K 0

ˇ̌̌̌
ˇ nX

iD1

rk.Hi / � .1 C ı/K 0

)
:

By examining the two terms on RHS, we can gain insight on how to to improve the probability
that rk.A/ D K 0 through the design of the precoding and batch encoding.
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High-density Parity Check
We now show that if the parity check matrix of the precoding behaves like a totally random
matrix, then Pr frk.A/ D K 0j rk.Z/ � .1 C ı/K 0g is very close to 1.

Lemma 8.9 When W1W�1
2 is a totally random matrix over the base field GF.q/, for 0 � ı �

K=K 0 � 1,
Pr
˚
rk.A/ D K 0

j rk.Z/ � .1 C ı/K 0
	

� �K�K0

K�.1Cı/K0.q/:

Proof. We will prove that for k � .1 C ı/K 0 and k � K 0 � k2 � K � K 0,

Pr
˚
rk.A/ D K 0

j rk.Z2/ D k2; rk.Z/ D k
	

D �
k2

K0�kCk2
.q/ (8.15)

� �
k2

k2�ıK0.q/

� �K�K0

K�.1Cı/K0.q/;

which implies the lemma. The first inequality follows from .1 C ı/K 0 � k and �m
rC1 < �m

r , and
the second inequality follows from k2 � K � K 0 and �rC1

rC1 < �r
r . The equality (8.15) is verified

as follows.
The row vectors of Z2 span a vector space V of dimension k2. Assume that the first k � k2

rows of Z1 are not in V and all the other rows are in V . If the assumption does not holds, we
can apply elementary row operations on both sides of (8.14) so that the transformed Z1 satisfies
the assumption. Note that the elementary row operations preserves the total randomness of
W1W�1

2 .
Write Z1 D Z0

1 C Z00
1 where the last K 0 � k C k2 rows of Z0

1 are all zero, and the first k � k2

rows of Z00
1 are all zero. Then, A D Z0

1 C Z0
2 where Z0

2 D Z00
1 � W1W�1

2 Z2, and A has a full row
rank if and only if the last K 0 � k C k2 rows of Z0

2 are linearly independent. Since the rows of
Z0

2 are i.i.d. and uniformly distributed in V , the probability that the K 0 � k C k2 rows of Z0
2 are

linearly independent is �
k2

K0�kCk2
.q/, which proves (8.15). �

We know that

1. when K; K 0, and ı are constants with K=K 0 � 1 C ı, �K�K0

K�.1Cı/K0.q/ ! 1 as q ! 1; and

2. when q is a constant, and limK0!1 K=K 0 > 1 C ı, �K�K0

K�.1Cı/K0.q/ ! 1 as K 0 ! 1.

For practical implementation, we can use a dense matrix to emulate a totally random matrix.
However, directly solving the parity check matrix using matrix multiplication as in (8.11) has
a high computation cost when W1W�1

2 is dense, and hence results in a high precoding and
encoding complexity. Moreover, we would prefer a spare parity check matrix so that the BP
decoding of BATS codes can be applied to the precode. Therefore, we prefer a precode with the
following prescription for the parity check matrix.

1. W is close to be sparse so that BP decoding can be applied to solve the precode.
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2. The parity check packets can be efficiently solved.

3. W1W�1
2 behaves like a totally random matrix.

An example design can be found in practical Raptor codes [69], wheremost of the columns
of W are sparse but several columns of W are dense. The sparse columns of W are called LDPC
and the dense columns of W are called high-density parity check (HDPC). Suppose the last h

columns of W are dense. We write

W1 D
�
S1 D1

�
;

W2 D

�
I D2

S2 I0

�
;

where D1 and D2 have h columns, and I and I0 are identity matrices. Then,

W1W�1
2 D

�
.S1 C D1S2/.D2S2 C I/�1 .D1 � S1D2/.S2D2 C I0/�1

�
:

When D1 is a dense matrix, the last h columns of W1W�1
2 are more likely to be dense even when

D2 D 0. But S2 must be nonzero to guarantee that the first K � K 0 � h columns of W1W�1
2 are

dense.
With such a parity-check matrix, we write the parity-check packets as P D

�
PL PH

�
where PH is formed by the last h columns of P. The packets in PL and PH are called the LDPC
and HDPC packets, respectively.

Pre-inactivation
We now show that if the batch degrees are high, the probability of rk.Z/ � K 0 given that the
total rank is at least K 0 is close to 1.

Lemma 8.10 When all the batches have degree K, for K=K 0 � 1 C ı,

Pr
(
rk.Z/ � .1 C ı/K 0

ˇ̌̌̌
ˇ nX

iD1

rk.Hi / � .1 C ı/K 0

)
� �K

.1Cı/K0.q/:

Proof. The matrix QG D
�
G1 � � � Gn

�
is a K � nM totally random matrix. Form a matrix QH0 by

putting together .1 C ı/K 0 linearly independent columns of QH D diag.H1; H2; : : : ; Hn/. Note
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that Z D QG QH. Then,

Pr
(
rk.Z/ � .1 C ı/K 0

ˇ̌̌̌
ˇ nX

iD1

rk.Hi / � .1 C ı/K 0

)
D Pr

(
rk. QG QH/ � .1 C ı/K 0

ˇ̌̌̌
ˇ nX

iD1

rk.Hi / � .1 C ı/K 0

)
� Pr

(
rk. QG QH0/ D .1 C ı/K 0

ˇ̌̌̌
ˇ nX

iD1

rk.Hi / � .1 C ı/K 0

)
D �K

.1Cı/K0.q/:

�

We know that:

1. when K, K 0, and ı are constants with K=K 0 � 1 C ı, �K
.1Cı/K0.q/ ! 1 when q ! 1; and

2. when q is a constant, and limK0!1 K=K 0 > 1 C ı, �K
.1Cı/K0.q/ ! 1 when K 0 ! 1.

The above lemma suggests the use of a large batch degree to increase the probability that the
inactive packets can be decoded. We also know that a BATS code must employ a proper degree
distribution to guarantee the low encoding/decoding complexity. Pre-inactivation enables us to
design batch encoding satisfying both requirements.

Specifically, the (precoded) input packets are separated into active input packets and pre-
inactive input packets. The encoding of a batch with pre-inactivation consists of two steps.

1. The normal BATS code encoding is applied on the active input packets only. The degree
used in this step follows a degree distribution optimized for BP decoding (as discussed in
Chapter 6 and Section 7.4).

2. Each encoded packet in the first step is further combined with a number of pre-inactive
packets.

These pre-inactive packets are inactive from the beginning of the decoding, so their involvement
in the encoding does not affect the BP decoding.

8.3.2 ENCODINGWITHHDPCANDPRE-INACTIVATION
Now we use an example to show how precoding and BATS encoding work when using both
HDPC and pre-inactivation. Here, the HDPC packets are always pre-inactive since they are
not efficient for BP decoding, and a subset of the input packets is pre-inactivate. All the LDPC
packets are active since precoding can increase the number of packets recovered by BP decoding.
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Generation of Parity-check Packets
We first see how to generate the parity-check packets of precoding. Write B0 D

�
B0

A B0
I
�
with

B0
I being the pre-inactive input packets, and write P D

�
PL PH

�
with PH being the HDPC

packets. With HDPC and pre-inactivation, the parity check constraints can be written as

�
B0

A PL B0
I PH

�2664
S1 D1

I D2

SP DP
S2 I0

3775 D
�
0 00

�
; (8.16)

where the columns of S1 and D1 are LDPC and HDPC parity check matrices, respectively. The
parity-check packets can be obtained by solving�

PL PH
� � I D2

S2 I0

�
D �

�
B0

A B0
I
� �S1 D1

SP DP

�
;

which is equivalent to�
PL PH

� � I 0
S2 I0 � S2D2

�
D �

�
B0

A B0
I
� �S1 D1 � S1D2

SP DP � SPD2

�
:

First, calculate

B�
D �

�
B0

A B0
I
� �S1

SP

�
;

which can be done efficiently since S1 and SP are both sparse. Then, PH is obtained by solving

PH.I0
� S2D2/ D �

�
B0

A B� B0
I
�24D1

D2

DP

35 ;

which can be efficiently solved if the matrix multiplication from the left of D ,

24D1

D2

DP

35 can be

efficiently calculated. We refer readers to [69] for an example of HDPC design to achieve this
goal. Lastly,

PL D B�
� PHS2:

BATSEncoding with Pre-inactivation
Let B D

�
B0

A PL B0
I PH

�
, BA D

�
B0

A PL
�
, and BI D

�
B0

I PH
�
. Packets in BI are pre-

inactive. With pre-inactivation, batch i is encoded as

Xi D
�
Bi

NBi

� �Gi

NGi

�
D BiGi C NBi

NGi ;
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where Bi � BA and Gi have the same meanings as in the BATS code encoding in Section 2.1;
NBi � BI are the pre-inactive packets used in the encoding of this batch; and NGi is the generator
matrix of the pre-inactive packets. Readers can find a design example of NBi and NGi in [69].

The index set Ai now only includes the indices of the active packets. Pre-inactivation is
transparent for recoding. Recall that Hi the batch transfer matrix of batch i , so the received
packets of batch i is given by Yi D XiHi .

With HDPC and pre-inactivation, the system of equations formed by BATS codes be-
comes

�
B0

A PL B0
I PH

�2664
Z1 S1 D1

Z2 I D2

ZI SP DP
ZH S2 I0

3775 D
�
Y 0 00

�
; (8.17)

where

•
�
Z1

Z2

�
is determined by Gi and Hi , i D 1; : : : ; n as in (8.12); and

•
�

ZI
ZH

�
is formed by the coefficients of the pre-inactive packets NGi , i D 1; : : : ; n.

8.3.3 DECODINGOF INACTIVE PACKETS
To make it clear how the inative packets are solved, we discuss the operations of INAC.n/ in a
way similar to our discussion of BP.n/ in Section 2.3.1. To simplify the notation, we omit the
superscripts for the time index.

Denote by I the index set of the inactive (precoded) packets. Initially, I includes the
indices of BI. Let Ji D GiHi . The associated linear system of batch i can be rewritten as

Yi D BiJi C NBi
NGiHi D BiJi C BIJi;I ; (8.18)

where BI is the subset of B with columns of indices in I, and Ji;I is formed by expending NGiHi

with all-zero rows such that NBi
NGiHi D BIJi;I .

We say that a batch i is decodable if rk.Ji / D jAi j, where only the active packets are taken
into consideration. INAC.n/ updates Ai ; Ji ; Ji;I ;I, and Yi as follows. For each decoding iter-
ation, if a decodable batch exists, we select one such batch, say batch i , and apply the following
operations.

1. Apply column operations on the linear system (8.18) of batch i so that Ji is transformed
into the form

�
I 0

�
. Yi and Ji;I are updated by the same transformation. The associated

linear system of batch i after the transformation becomes

Yi D Bi

�
I 0

�
C BIJi;I ;



144 8. INACTIVATIONDECODING
or

Y0
i D Bi C BIJ0

i;I ; (8.19)
Y00

i D BIJ00
i;I ; (8.20)

where
�
Y0

i Y00
i

�
D Yi and

�
J0

i;I J00
i;I
�

D Ji;I . Equation (8.19) will be used to solve the
active packets involved in batch i and (8.20) provides the constraints for inactive packets.

2. Select an active input packets from Bi , say bj . We treat bj as decoded in the form

bj D Qbj � BIcj ;

where Qbj and cj are the corresponding columns of Y0
i and J0

i;I , respectively, and the inactive
packets BI will be substituted back when they are solved. We then substitute bj into the
batches it contributes to. Suppose j 2 Ai 0 . The substitution of bj in batch i 0 includes the
following operations:

(a) remove j from Ai 0 ;
(b) remove the row z of Ji 0 corresponding to bj ;
(c) change Yi 0 to Yi 0 � Qbj z; and
(d) change Ji 0;I to Ji 0;I � cj z.

If there are no decodable batches, we select an active input packet, say bj , to inactivate.

1. Add j into I.

2. For each batch i ,

(a) if j 2 Ai , then remove j from Ai , remove the row z of Ji corresponding to bj , and
insert row z to Ji;I ;

(b) if j … Ai , then insert an all-zero row to Ji;I .

TheLDPC constraints can be processed in a way similar to the above BP decoding process:
Each LDPC constraint can be regarded as a batch of size one with an all-zero received packet.
If the HDPC constraints are employed, they will be used for solving the inactive packets.

The above decoding process is repeated until all the packets in B are either decoded or
inactive. Let NI be the index set of the decoded packets. The decoder then tries to solve the
inactive packets. A system of linear equations of the inactive packets is formed by

1. Equation (8.20) from all the batches, and

2. the HDPC constraints.
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Write the decoded packets B NI as

B NI D QB NI � BIJ NI ; (8.21)

where QB NI and J NI are formed by juxtaposing Qbj and cj , j 2 NI, respectively. Then, B
�
D
I0

�
D 0

gives a part of the constrains of BI from HDPC.
The decoder should try to solve the inactive packets after the total rank of the received

batches is at least K 0. After the inactive packets BI are decoded, they will be substituted
into (8.21) to recover BI .
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C H A P T E R 9

BATSCodes in General
Networks

Line networks are mainly used as the example to discuss the design and analysis of BATS pro-
tocols in Chapters 3 and 4. Line networks not only have important applications, but also are the
building blocks of more complicated networks. The BATS protocols designed for a line network
can be used in a more complicated network with some modifications.

In this chapter, we study BATS protocols for networks beyond line networks and discuss
some of their applications. We assume that the network links all have unit capacity (per use).
We allow multiple edges between two network nodes, which can be used to model a network
link of non-unit capacity. If all the network links in a network have the same packet loss rate,
these links are said to be homogeneous, otherwise heterogeneous.

9.1 UNICASTNETWORKS
A unicast network is represented by a directed acyclic graph with one source node and one desti-
nation node. See Figure 9.1 for a network with a non-line topology. The BATS code protocol
designed for a line network, e.g., BATS-Pro-0, can be applied to homogeneous unicast networks
except that it needs to handle two new situations at the network layer:

Ra

Rb

Src Dst

Figure 9.1: An example of unicast network.

1. At network nodes with more than one incoming link (e.g., Rb and Dst in Figure 9.1), the
network layer should handle the packets received from all links.

2. At network nodes with more than one outgoing link (e.g., Src and Ra in Figure 9.1), the
network layer should decide how to transmit packets on its outgoing links.



148 9. BATSCODES INGENERALNETWORKS
Since the network layer can process packets from all incoming links in the exactly same

way, the first situation can be simply be handled by a multiplexer. We focus on the second
situation, where a network node has multiple outgoing links. We first consider unicast networks
with homogeneous links, and then discuss unicast networks with heterogeneous links.

9.1.1 HOMOGENEOUSUNICAST
Consider a unicast network with packet loss rate � for all links. The network layer of a BATS
protocol should know how to transmit the recoded packets on its outgoing links. We introduce
one such approach. Find a set of L edge-disjoint paths from the source node to the destination
node. A network node transmits the recoded packets only on the L outgoing links in these paths,
and all the packets belonging to the same batch are transmitted on the same outgoing links. We
further require that a batch is always transmitted on the same path, which is not a necessity
but it simplifies our analysis. In practice, a network node may assign an available outgoing link
randomly for each batch.

The above transmission scheme in a unicast network is equivalent to the transmission on L

line networks. It is not necessary to use L BATS encoders/decoders since one encoder/decoder
can serve all the paths. For each path, when using the RLNC recoding discussed in Chapter 3,
the normalized expected rank of the transfer matrices converges to 1 � � as the batch size M !

1. So the overall throughput of a BATS protocol can be very close to L.1 � �/, which is the
min-cut capacity of the network if L is the maximum number of edge-disjoint paths from the
source node to the destination node.

If we apply the advanced recoding schemes in Chapter 4, the numbers of recoded packets
of a batch can be different for different outgoing links, and they can be optimized for each path
individually.

9.1.2 HETEROGENEOUSUNICAST
Now we consider a general unicast network where the network links may have different packet
loss rates, for which direct application of the edge-disjoint path approach may not be optimal.
Consider the example in Figure 9.2 with �1 D �3 D 0:1 and �2 D �4 D 0:2. The capacity of the
network is the min-cut 1:7. If we pick the edge-disjoint paths .e1; e4/ and .e2; e3/, where the
min-cut of both paths is 0:8, and apply the BATS protocol on both paths, the throughput is
upper bounded by 1:6. A better choice is to use the path .e1; e3/ and .e2; e4/, for which the min-
cuts of are 0:9 and 0:8, respectively, so that the throughput of a BATS protocol can approach
the capacity.

For a general unicast network G with heterogeneous links, we can apply BATS codes in
three steps.

1. Obtain a unicast network G� with homogeneous links that has the same min-cut G.
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RSrc Dst

e1

e2

e3

e4

Figure 9.2: An example of heterogeneous unicast network G8, where edge ei has a packet loss
rate �i .

2. Design a BATS protocol for network G� using an approach for homogeneous unicast
networks.

3. Convert the protocol on G� to one that can be used in network G while preserving the
performance.

The second step has already been discussed. The first and third steps are now explained.
Assume that the link erasure probabilities are all rational. Fix a sufficiently large integer

N such that .1 � �/N is an integer for the packet loss rate � of any link in the network. Then,

1 � .1 � �/N;

or
� � 1 � 1=N: (9.1)

Network G� has the same set of nodes as network G. For any link e between nodes a and
b in G with packet loss rate �, we have a set of .1 � �/N parallel links, denoted by ei , i D

1; : : : ; .1 � �/N between nodes a and b in G� with packet loss rate 1 � 1=N , which does not
depend on �. Network G� is called the homogenized network of G, and the min-cut of network
G and G� are the same. For G�, we can find edge-disjoint paths from the source node to the
destination node and applied the BATS protocols for a line network on each path. The protocol
on G� can be converted to one on G as follows. Each node in G can use the same network layer
operations as in the corresponding node in G�, except that (1) the batches transmitted on an
edge ei in G� is transmitted in the corresponding edge e in G and (2) the number of packets
transmitted for each batch is adjusted (to be explained below) so that the transmission on e can
emulate the transmission on ei .

We use the network G8 in Figure 9.2 as an example to illustrate the abovemethod. Suppose
�i D i=10, i D 1; 2; 3; 4. The min-cut of the network is 1:3. Let N D 10. We see that N.1 � �i /

is an integer for i D 1; 2; 3; 4. The homogenized network G�
8 has 17 parallel links from node Src

to node R, where 9 correspond to e1 and 8 correspond to e2, and 13 parallel links from node R
to node Dst, where 7 correspond to e3 and 6 correspond to e4. All the links in the homogenized
network have packet loss rate 1 � 1=N D 0:9.

We can find 13 edge-disjoint paths from Src to Dst, where the min-cut of each path is
0:1. Suppose a BATS code with batch size M is used for G�

8 and the number of recoded packets
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of a batch is QM . For example, when M D 16, the optimal value of QM is about 200, and the
average number of received packets for a batch in G�

8 is QM
N

D 20. When M is large, this BATS
code protocol can achieve a throughput very close to 1:3 for G�

8 .
When using this BATS code protocol on G8, we do not need to transmit QM packets for

each batch on edge ek , k D 1; 2; 3; 4 since the packet loss rate of edge ei is �k < 0:9. To emulate
the transmission in G�

8 , we can artificially delete a packet with probability 1 �
1

N.1��i /
before

transmitting the packet on edge ei , so that the effective packet loss rate on edge ei is 1 �
1
N

.
Hence, a BATS protocol can as well achieve a throughput very close to the min-cut of G8.

Instead of deleting the packets artificially, a better approach in practice is to generate
and transmit QM

N.1��/
packets for each batch on an edge in G8, so that the number of received

packets of a batch has the binomial distribution B.
QM

N.1��/
; 1 � �/. Note that in G�

8 , the number
of received packets of a batch has the binomial distribution B. QM; 1=N /. Both distributions have
the same mean QM

N
, but the latter has a smaller variance due to (9.1).

9.2 MULTICASTNETWORKS
Now we turn to a multicast network represented by a directed acyclic graph with one source node
and multiple destination nodes. We will only discuss multicast networks with homogeneous
links, and our discussion can be applied on multicast networks with heterogeneous links using
the same approach for unicast networks.

9.2.1 TREE PACKING
We first consider a homogeneous network with a tree topology, where the root is the source
node and all the leaves are destination nodes. There is at most one edge between any two nodes;
multi-edge tree will be considered later. A BATS protocol for a line network can be extended to
a tree network by allowing a node to transmit the same packets on all its outgoing links, which
is called a tree protocol.

Suppose the network has k destination nodes t1; t2; : : : ; tk where t1 has the largest depth
among all the destination nodes. The min-cut of the tree network is the min-cut of the node t1.
Intuitively, a destination node with a smaller depth can emulate node t1, so that we can use the
BATS code optimized for node t1 to approach the multicast capacity. We actually can show that
the rank distribution obtain at node tj , j > 1, dominates that of t1. Hence, by Lemma 6.12,
if t1 can decode successfully by BP decoding with a high probability, all the other destination
nodes do so. Therefore, a BATS protocol can achieve a throughput very close to the min-cut of
the tree.

We can extend the tree protocol for a general multicast network G with homogeneous
links by packing trees. Find a collection T of subgraphs of G with a tree topology, where the
the root is the source node and the leaves are the destination nodes. Note that a tree in T may
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include only a subset of the destination nodes as their leaves, and different trees in T may share
common links and nodes. The source node of G can generate and transmit batches on different
trees using the tree protocol.

To see how to optimally pack the trees in T , we introduce an optimization problem.
Suppose the network G has E pairs of nodes between each of which there exists at least one
link. Define an order on these E pairs of nodes and let C be a vector of E entries where C Œi� is
the number of links between the i-th pair of nodes. For T 2 T , let LT be a vector of E entries
where LT Œi � is 1 if a link between the i-th pair of nodes is used in T , and 0 otherwise. Define
an order on the destination nodes, and for T 2 T , let DT be a vector indicating the destination
nodes in T , i.e., DT Œi � is 1 if the i-th destination node is a leaf in T , and 0 otherwise. Consider
the following optimization problem:

max
˛T �0;T 2T

R

s.t.
X
T 2T

˛T LT � CX
T 2T

˛T DT � R � 1;

(9.2)

where the inequalities are evaluated component-wise. Let R� be the optimal value of (9.2). We
know that a BATS protocol can achieve a rate very close to R�.1 � �/, where � is the packet loss
rate.

In general, R�.1 � �/ is smaller than the min-cut of the network. We give two examples
where R�.1 � �/ is the min-cut. The first example is a multi-edge tree network with homoge-
neous links. In this case, R� is the maximum number of edge-disjoint trees with the source node
as the root and all the destination nodes as the leaves.

Another example is a three-layer network with homogeneous links, where the top layer
has only the source node, the bottom layer consists of only the destination nodes, and there exist
no direct links between the source node and a destination node. See Figure 9.3 for an example. In
this case, R� is the minimum degree of all the destination nodes, and can be achieved by packing
the trees each of which is formed by a node at the middle layer, together with its incoming and
outgoing edges. In the network in Figure 9.3, we have three such edge-disjoint trees and R� D 2.

Figure 9.3: A three-layer network. Node at the top layer is the source node. Nodes at the middle
layer are the intermediate nodes. Nodes at the bottom layer are the destination nodes.
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A three-layer network models a content distribution network (CDN), where the source

node is the server, the nodes at the middle layer are the edge servers that are close to the users
represented by the nodes at the bottom layer. Each edge server stores a certain amount of data,
which is represented by the transmissions from the source node to the middle layer. The data
stored at the edge servers will be further consumed by multiple users, which is represented by
the transmissions from the middle layer to the bottom layer. Classical CDN stores parts of the
original files at the edge servers, which is not optimal. In general, coding at the source node is
necessary in terms of achieving the min-cut, even when there is no packet loss [103]. In other
words, to satisfy the demands of multiple destination nodes, the data stored at the middle layer
should be coded. With packet loss, recoding at the middle layer is also necessary to achieve the
min-cut. Using BATS codes for CDN, each edge serve can store a number batches received
from the server. When a user wants to download the file, the edge servers transmit recoded
packets to the user, which decodes the file after a sufficient number of packets are received.

9.2.2 MULTICAST PROTOCOL I
Tree packing is not optimal in general. The butterfly network in Figure 9.4 is such an example,
where the network links are homogeneous and have packet loss rate �. The min-cut of the net-
work is 2.1 � �/. Using tree packing, the optimal value of (9.2) is 1:5 so that the throughput
of a BATS protocol is upper bounded by 1:5.1 � �/. From the literature of network coding, we
know that to achieve the min-cut of the butterfly network, network coding among the packets
received from both the incoming edges of node c is necessary [103]. The tree packing approach,
however, does not employ network coding among the packets received from both the incoming
edges of node c.

Src

a

c

d

b

t u

Figure 9.4: Butterfly network. Node Src is the source node. Node t and u are destination nodes.

We discuss two BATS code protocols that can benefit from network coding among the
packets received from both the incoming edges of node c. To simplify the discussion, we as-
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sume the number of recoded packets is the same as the batch size. The performance of these
two protocols can be improved by optimizing the number of recoded packets as discussed in
Chapter 4.

We use the butterfly network to illustrate the first protocol. Suppose the source node
generates batches of size M , an even number. The source node transmits M=2 packets of a
batch on link .Src; a/ and the other M=2 packets of the batch on link .Src; b/. For each batch
received by node a (resp. b or d ), M=2 recoded packets are generated and transmitted on both
outgoing links. Node c receives packets belonging to the same batch from both of its incoming
edges, generates M=2 recoded packets, and transmits them on its outgoing edge. Node c can
potentially receive up to M packets of a batch from both of its incoming edges, but it only
generates M=2 recoded packets for each batch. This ensures that on each link in the network,
it takes exactly M=2 uses of the link for the transmission of a batch. Note that all the network
nodes only apply network coding for packets belonging to the same batch.

Each sink node can potentially receive up to M packets of a batch from both of its incom-
ing edges. The expected rank of the transfer matrix normalized by M=2 converges to 2.1 � �/

when the batch size is sufficiently large. Due to symmetry, the two destination nodes have the
same rank distribution of the batch transfer matrices. Therefore, a BATS code protocol can
achieve a network throughput very close to the multicast capacity of the butterfly network when
the batch size is sufficiently large.

This protocol, called Multicast Protocol I, can be applied to a general multicast network
(see also [92]). Consider a multicast network G with homogeneous links of packet loss rate
�. Without loss of generality, we assume that the source node has L outgoing links, all the
destination nodes have L incoming edges, and the number of edge-disjoint paths from the
source node to each destination node is L.

In Multicast Protocol I, the source node generates batches of size M , which can be divided
by L, and transmits the L packets of a batch on all its outgoing links evenly using M=L time
slots. All the intermediate network nodes also use M=L time slots to transmit a batch on each
of its outgoing links. Using an upstream-to-downstream order, each intermediate network node
applies the following (vector) linear network coding of block length M=L. Fix an intermediate
node v. Let Xv be the k (0 � k � M ) packets of a batch received by node v from all its incoming
edges, which is a matrix of k columns. For each outgoing edge e of v, the recoded packets of
the batch transmitted on edge e are

Xe D Xvˆe;

where ˆe is a k �
M
L

matrix. When using RLNC recoding, ˆe is totally random.
Note that in Multicast Protocol I, the linear network coding at all the intermediate nodes

applies only on packets belonging to the same batch. According to the theory of random lin-
ear network coding, the expected rank of the transfer matrix normalized by the network uses
converges to the min-cut L.1 � �/ for each destination node when the batch size tends to infin-
ity [13, 45, 88]. However, the rank distributions of different destination nodes may be different.
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In general, we need the approach discussed in Section 6.3 to optimize the degree distribution
for multicast.

This protocol may be difficult to implement when L is large. In the above protocol, M=L

recoded packets are transmitted on each edge. We need M=L to be sufficient large so that the
BATS code can compensate for the packet loss effectively. Hence, the batch size M must be a
number that increases with L, e.g., we may use M D 16L. However, for L D 5, M may already
be too large for efficient encoding and decoding on many devices.

9.2.3 MULTICAST PROTOCOL II
We discuss another multicast protocol, called Multicast Protocol II, that may resolve the issues
of the Multicast Protocol I. We again use the network G in the last subsection. In Multicast
Protocol II, we first fix L edge-disjoint paths from the source node to each sink node, and
denote by P the collection of the paths to all the destination nodes. Assume that each edge in
G is used by at least one path in P . The second protocol operates as follows.

• The source node generates a sequence of batches of size M and transmits L different
batches on its L outgoing links.

• At an intermediate node v, vector linear network coding of block length M is applied on
batches received from different incoming links. In particular, denote by a matrix Xe the
packets of a batch received from an incoming edge e of node v. Note that Xe and Xe0

are different batches whenever e0 ¤ e. For each outgoing edge f of node v, the packets
transmitted on edge f is formed by

Xf D
X

e2In.v/

Xeˆe;f ;

where ˆe;f is an M -column matrix, and In.v/ is the set of incoming edges of v. When us-
ing RLNC recoding, ˆe;f is totally random. Xf is regarded as a new batch. This operation
at node v is executed according to an upstream-to-downstream order.

Unlike Multicast Protocol I, Multicast Protocol II does not require the batch size to be
large when L is large, but the network coding operations use packets belonging to different
batches. Analyzing the performance of BP decoding when packets belonging to different batches
are jointly recoded is beyond the scope of this monograph. Here, we use an example to illus-
trate that it is possible to decode efficiently when packets of two batches are combined at the
intermediate nodes.

Consider again the butterfly network. The source node separates its input packets into two
groups A and B . The source node encodes packets in group A and in group B using two BATS
codes of batch size M , and the batches generated using groups A and B are denoted by XAŒi �

and XB Œi �, i D 1; 2; : : : ; respectively. Batches XAŒi �, i D 1; 2; : : : are transmitted on link .s; a/

and batches XB Œi �, i D 1; 2; : : : are transmitted on link .s; b/. Nodes a, b, c, and d apply the
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recoding as described in Multicast Protocol II. When all the network links have the same delay,
node c would receive packets of XAŒi � and XB Œi � simultaneously from both incoming edges.
After recoding, node c transmits the packets XAŒi �Hc

AŒi � C XB Œj �Hc
B Œi �, where Hc

AŒi � and Hc
B Œi �

are the transfer matrices for XAŒi � and XB Œi � at node c, respectively.
Node t first decodes the packets in group A using the batches received from link .a; t/.

The packets received from link .d; t/ are in batches of the form

YŒi � D XAŒi �HAŒi � C XB Œj �HB Œj �;

where HAŒi � and HB Œi � are the corresponding batch transfer matrices. Since group A has been
decoded, node t can recover the batch XAŒi � and cancel the effect of XAŒi � from the received
batch Y Œi �. Then node t decodes the packets in B . Node u applies a similar decoding procedure.

The butterfly network has two sub-trees with node Src as the root and nodes t and u as
the leaves: one sub-tree contains nodes a, c, and d ; and the other sub-tree contains nodes b,
c, and d . In the above scheme, for each group of the input packets, we apply a BATS code for
multicast in one of the two sub-trees. Since the two sub-trees share the network link .c; d/, the
batches of these two BATS codes are mixed together to share the network link .c; d/. Note that
we do not mix the batches of the same BATS code. The decoding at a destination node is a kind
of successive cancellation: one group of the input packets is first decoded using BP decoding for
the corresponding BATS code; the effect of this group is canceled out from the mixed batches;
the other group of input packets is then decoded using BP decoding for the other BATS code.

9.3 MOREWIRELESSNETWORKAPPLICATIONS
BATS code is in general superior than other approaches for multi-hop wireless network commu-
nications, especially in the scenario that the physical communication links have a high packet
loss rate and long transmission delay. In wireless communications, packet loss rate is usually
high due to interference, channel dynamics, mobility, etc. In deep-space communication, the
transmission delay is long. In underwater acoustic communication, the packet loss rate is high
and the transmission delay is long.

Multi-hop wireless communication networks find applications in many areas. In urban
wireless sensor networks, multi-hop transmission can extend the coverage of the fixed network
infrastructure and reduce the cost of using fixed network infrastructure. More than 70% of the
surface of Earth is covered by ocean, where communications can only be supported by satel-
lites nowadays. Satellite communication is not only expensive, but is also limited in bandwidth.
Moreover, satellite communication cannot be directly used under the water. On the other hand,
multi-hop wireless communications can be used in ocean communication for both under and
above the water.

The application of BATS codes in wireless networks is being studied extensively. BATS
code is ideal for wireless multicast due to its network coding nature. We have discussed such
an example in Section 6.3. BATS code is also suitable for multi-path transmission to improve
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reliability and security. Instead of discussing more details of wireless network applications, we
refer readers to the literature. A two-phase cooperative broadcasting based on BATS codes was
proposed in [89]. BATS codes in two-way relay networks has been studied in [24, 107]. Appli-
cations of BATS codes in deep-space networks has been discussed in [109].
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A P P E N D I X A

Proof ofTheorem 5.7
A.1 AGENERALTHEOREM
The main technique to prove Theorem 5.7 is a general theorem by Wormald [86, 87] with a
small modification. The statement of the next theorem follows that of [87, Theorem 5.1] with an
extra initial condition. A similar version is provided in [62, Theorem C.28] with a deterministic
boundedness condition.

We say a function f .u1; : : : ; uj / satisfies a Lipschitz condition on D � Rj if there exists a
constant CL such that

jf .u1; � � � ; uj / � f .v1; � � � ; vj /j � CL max
1�i�j

jui � vi j

for all .u1; � � � ; uj / and .v1; � � � ; vj / in D. We call CL the Lipschitz constant for f . Note that
max1�i�j jui � vi j is the distance between .u1; � � � ; uj / and .v1; � � � ; vj / in the l1-norm.

Theorem A.1 Let G0;G1; : : : be a random process with a positive integer parameter n, and let
.Yl.t//

L
lD0

be a random vector determined by G0; : : : ;Gt . For some constant C0 and all l , jYl.t/j <

C0n for t � 0 and all n. LetD be some bounded connected open set containing the closure of

f.0; z1; : : : ; zL/ W 9n; PrfYl.0/ D zln; 1 � l � Lg ¤ 0g:

Define the stopping time TD to be the minimum t such that .t=n; Y1.t/=n; : : : ; YL.t/=n/ … D. As-
sume the following conditions hold.

(i) (Boundedness) For some functions ˇ D ˇ.n/ � 1 and 
 D 
.n/, the probability that

max
l

jYl.t C 1/ � Yl.t/j � ˇ;

is at least 1 � 
 for t < TD.

(ii) (Trend) For some function �1 D �1.n/ D o.1/, if t < TD,

EŒYl.t C 1/ � Yl.t/jG1; : : : ;Gt � D fl

0@ t

n
;

 
Y

.t/
i

n

!L

iD0

1AC O.�1/;

for 1 � l � L.
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(iii) (Lipschitz) Each function fl satisfies a Lipschitz condition onD \ f.t; z1; : : : ; zL/; t � 0gwith

the same Lipschitz constant CL for each l .

(iv) (Initial condition) For some point .0; z0
1 ; : : : ; z0

l
/ 2 D,

jYl.0/=n � z0
l j � � D o.1/; 0 � l � L:

Then the following are true.
(a) For .0; . Ozl/

L
lD1

/ 2 D, the system of differential equations
d zl.�/

d �
D fl.�; .zl 0.�//L

l 0D1/; l D 1; : : : ; L;

has a unique solution in D for zl W R ! R passing through zl.0/ D Ozl , l D 1; : : : ; L, and this
solution extends to points arbitrarily close to the boundary ofD.

(b) Let � > maxf�; �1 C C0n
g with � D o.1/. There exists a sufficiently large constant C1 such
that when n is sufficiently large, with probability 1 � O.n
 C

ˇ
�

exp.�n�3

ˇ3 //,

jYl.t/ � nzl.t=n/j D O.�n/ (A.1)

uniformly for 0 � t � N�n and for each l , where Ozl D z0
l
, and N� D N�.n/ is the supremum of those

� towhich the solution of the system of differential equations in (a) can be extended before reaching
within l1-distance C1� of the boundary ofD.

Proof. The proof follows exactly the proof of [87, Theorem 5.1] except for the place where we
need to handle the initial condition (iv). We only have to modify the definition of Bj (below
(5.9) in [87]) in the original proof to

Bj D .n� C !/

 �
1 C

B!

n

�j

� 1

!
C B0

�
1 C

B!

n

�j

;

where B0 D n�. The induction in the original proof now begins by the fact that jzl.0/ �

Yl.0/=nj � � < O.�/. The other part of the proof stays the same as that of [87, Theorem 5.1].
�

A.2 COMPLETINGTHEPROOF
We first prove two technical lemmas. For BATS.K; n; …/, the degrees of the variable nodes are
not independent but follow the same distribution. The following lemma shows that the degree
of a variable node is not likely to be much larger than its expectation.

Lemma A.2 Let V be the degree of a variable node of BATS.K; n; …/. For any ˛ > 0,

PrfV > .1 C ˛/ N‰=�g <

�
e˛

.1 C ˛/.1C˛/

� N‰=�

;
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where � D K=n.

Proof. Fix a variable node. Let Xi be the indicator random variable of the i th check node be-
ing the neighbor of the specific variable node. Then V D

P
i Xi . We have EŒV � D

P
i EŒXi � DP

i

P
d

d
K

‰d D
n
K

N‰ D
N‰
�
. Since Xi , i D 1; : : : ; n, are mutually independent, the lemma is

proved by applying the Chernoff bound. �

The following lemma verifies the boundedness condition of Theorem A.1. Let

F D f.d; r/ W 1 � r � M; r < d � Dg:

Lemma A.3 When ˇ=D > N‰=� , the probability that

max
�2F[f0g

jE.tC1/
� � E.t/

� j � ˇ;

is at least

1 � �n exp
 

�
ˇ

D
.ln.ˇ=D/ � ln. N‰=�/ � 1/ �

N‰

�

!
:

Proof. Let V be the degree of the variable node to be removed at the beginning of time t C 1.
By (5.17), we have for .d; r/ 2 F ,

jE
.tC1/

d;r
� E

.t/

d;r
j � DV;

and by (5.18), we have
jE

.tC1/
0 � E

.t/
0 j � DV:

Hence when ˇ=D > N‰=� ,

Pr
�

max
�2F[f0g

jE.tC1/
� � E.t/

� j � ˇ

�
� PrfVD � ˇg

� Prfdegrees of all variable nodes at time zero � ˇ=Dg

> 1 � �n exp
 

�
ˇ

D
.ln.ˇ=D/ � ln. N‰=�/ � 1/ �

N‰

�

!
;

where the last inequality follows from Lemma A.2 and the union bound. �
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Proof ofTheorem 5.7. We consider in the proof only the instances of BATS.K; n; …/ satisfyingˇ̌̌̌

Ed;r

n
� �d;r

ˇ̌̌̌
< n�1=6; 1 � r � M; r � d � D: (A.2)

By Lemma 5.3 this will decrease the probability bounds we will obtain by at most �.n/ C

2M 2D exp.�2n2=3/.
Define the stopping time T0 as the first time t such that E

.t/
0 D 0. By defining suitable

functions fd;r ; .d; r/ 2 F and f0 we can rewrite (5.15) and (5.16) as

E
h
E

.tC1/

d;r
� E

.t/

d;r
j NE.t/

i
D fd;r

0@ t

n
;

 
E

.t/
0

n

!
;

 
E

.t/

d 0;r 0

n

!
.d 0;r 0/2F

1A ; .d; r/ 2 F

E
h
E

.tC1/
0 � E

.t/
0 j NE.t/

i
D f0

0@ t

n
;

 
E

.t/
0

n

!
;

 
E

.t/

d 0;r 0

n

!
.d 0;r 0/2F

1AC O
�

1

n

�
;

for t < T0. For � 2 F [ f0g, define random variable OE� as OE�.0/ D E�.0/, and for t � 0,

OE.tC1/
� D

8̂<̂
:

E
.tC1/
� t < T0

OE
.t/
� C f�

 
t
n
;

�
E

.t/
0

n

�
;

�
E

.t/

Qd;Qr

n

�
. Qd;Qr/2F

!
t � T0:

Note that T0 is also the first time that OE
.t/
0 becomes 0.

We now apply Theorem A.1 with . OE
.t/
0 ; . OE

.t/

d;r
/.d;r/2F / in place of .Yl.t//

L
lD1

. The region
D is defined as

D D .��; .1 � �=2/�/ � .�M; M C �/ � .��; d/jF j:

So (1) t=n is in the interval .��; .1 � �=2/�/; (2) OE
.t/
0 =n is in the interval .�M; M C �/; and

(3) OE
.t/

d;r
=n, .d; r/ 2 F , is in the interval .��; d/. As required, D is a bounded connected open

set and containing all the possible initial state .0; OE0.0/=n; . OEd;r.0/=n/.d;r/2F /.
The conditions ofTheoremA.1 can readily be verified.When t � T0, the change j OE

.tC1/
� �

OE
.t/
� j for � 2 F [ f0g is deterministic and upper bounded. When t < T0, by Lemma A.3 with

ˇ D n1=8, the boundedness condition (i) holds with


 D n exp
�
�n1=8 .c1;3 ln n � c1;1/ � c1;2

�
;

where c1;1, c1;2, and c1;3 are only related to N‰ and � . The trend condition (ii) is satisfied with
�1 D O.1=n/. By definition, it can be verified that f�, � 2 F [ f0g satisfy the Lipschitz condi-
tion (iii). The initial condition (iv) holds with � D O.n�1=6/.
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Wormald’s method [86, 87] leads us to consider the system of differential equations

d �d;r.�/

d �
D fd;r.�; �0.�/; .�d 0;r 0.�//.d 0;r 0/2F /; .d; r/ 2 F

d �0.�/

d �
D f0.�; �0.�/; .�d 0;r 0.�//.d 0;r 0/2F /

with the initial condition �d;r.0/ D �d;r , .d; r/ 2 F , and �0.0/ D
P

r �r;r . The conclusion (a)
of Theorem A.1 shows the existence and uniqueness of the solution of the above system of
differential equations. Here the system of differential equations can be solved explicitly.

Let �0 D O.n�1=6/. By the conclusion (b) of Theorem A.1, we know that for a sufficiently
large constant C1, with probability 1 � O.n
 C

ˇ
�0 exp.�n�03

ˇ3 //,

j OE
.t/

d;r
� n�d;r.t=n/j D O.n5=6/; .d; r/ 2 F ;

j OE
.t/
0 � n�0.t=n/j D O.n5=6/

uniformly for 0 � t � N�n, where N� is defined in Theorem A.1. Increase n if necessary so that
ˇ
�0 exp.�n�03

ˇ3 / D n7=24 exp.�n�1=8/ > n
 and C1�0 < �
2
� , which implies N� � .1 � �/� . So there

exists constants c0 and c0
0 such that the event

E0 D fj OE
.t/
0 =n � �0.t=n/j � c0n�1=6; 0 � t � .1 � �/Kg

holds with probability at least 1 � c0
0n7=24 exp.�n�1=8/.

Now we consider the two cases in the theorem to prove. (i) If �0.�/ > 0 for � 2 Œ0; .1 �

�/��, then there exists � > 0 such that �0.�/ � � for � 2 Œ0; .1 � �/��. Increase n if necessary so
that c0n�1=6 < �. Then, we have

PrfT0 > .1 � �/Kg D Prf OE.t/ > 0; 0 � t � .1 � �/Kg

� PrfE0g (A.3)
� 1 � c0

0n7=24 exp.�n�1=8/;

where (A.3) follows that under the condition E0, for all t 2 Œ0; .1 � �/K�, OE
.t/
0 =n � �0.t=n/ �

c0n�1=6 > 0. Since OE� D E�, � 2 F [ f0g, when t < T0, the first part of the theorem is proved.
(ii) Consider �0.�0/ < 0 for �0 2 Œ0; .1 � �/��. There exists � > 0 such that �0.�/ � �� for

all � 2 Œ�0 � �; �0 C �� \ Œ0; .1 � �/��. Increase n if necessary so that c0n�1=6 < � and n� > 1.
Then, we have

PrfT0 � .1 � �/Kg

D Prf OE
.t/
0 < 0; for some t 2 Œ0; .1 � �/K�g

� PrfE0g (A.4)
� 1 � c0

0n7=24 exp.�n�1=8/;

where (A.4) can be shown as follows. Since n� > 1, there exists t0 such that t0=n 2 Œ�0 � �; �0 C

�� \ Œ0; .1 � �/��. Hence, under the condition E0, OE0.t0/=n � c0n�1=6 C �0.t0=n/ < 0.
The proof of the theorem is completed by subtracting the probability that (A.2) does not

hold. �
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A.3 A SYSTEMOFDIFFERENTIALEQUATIONS

We solve the following system of differential equations given in (5.19) and (5.20), which is
reproduced as follows:

d�d;r.�/

d�
D
�
˛dC1;r�dC1;r.�/ C N̨dC1;rC1�dC1;rC1.�/ � �d;r.�/

� d

� � �
;

1 � r � M; r < d � D;
d�0.�/

d�
D

PD�1
rD1 r˛rC1;r�rC1;r.�/ � �0.�/

� � �
� 1;

with initial values �d;r.0/ D �d;r and �0.0/ D
P

r �r;r .
Let yd;r.�/ D .1 � �=�/�d �d;r.�/. We have

dyd;r.�/

d�
D

d

�
.˛dC1;rydC1;r.�/ C N̨dC1;rC1ydC1;rC1.�//:

We see that yd;r.0/ D �d;r.0/. We can verify that

yd;r.�/ D

DX
j Dd

 
j � 1

d � 1

!
.�=�/j �d �

.j �d/
j;r ;

where �
.j �d/
j;r is defined in (5.14). Thus,

�d;r.�/ D .1 � �=�/d

DX
j Dd

 
j � 1

d � 1

!
.�=�/j �d �

.j �d/
j;r : (A.5)

Using the general solution of linear differential equations, we obtain that

�0.�/ D

�
1 �

�

�

� Z �

0

PM
rD1 r˛rC1;r�rC1;r.t/

� � t
.1 � t=�/�1dt C � ln.1 � �=�/ C �0.0/

!
D

�
1 �

�

�

� MX
rD1

r˛rC1;r

Z �

0

�rC1;r.t/

� � t
.1 � t=�/�1dt C � ln.1 � �=�/ C �0.0/

!
: (A.6)
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The integral in (A.6) can be further calculated as follows:Z �

0

�rC1;r.t/

� � t
.1 � t=�/�1dt D

Z �

0

PD
j DrC1 �

.j �r�1/
j;r

�
j �1

r

�
.1 � t=�/rC1.t=�/j �r�1

.� � t /.1 � t=�/
dt

D

Z �

0

DX
j DrC1

�
.j �r�1/
j;r

 
j � 1

r

!
.1 � t=�/r�1.t=�/j �r�1 dt

�

D

DX
j DrC1

�
.j �r�1/
j;r

 
j � 1

r

!Z �=�

0

.1 � t /r�1tj �r�1dt

D

DX
j DrC1

�
.j �r�1/
j;r

 
j � 1

r

!
.j � r � 1/Š.r � 1/Š

.j � 1/Š
Ij �r;r.�=�/

D 1=r

DX
j DrC1

�
.j �r�1/
j;r Ij �r;r.�=�/;

where the first equality is obtained by substituting �rC1;r.t/ in (A.5), and the second last equality
is obtained by the definition of incomplete beta function (see (5.6)). Therefore, the solution for
�0.�/ is

�0.�/ D

�
1 �

�

�

� MX
rD1

˛rC1;r

DX
dDrC1

�
.d�r�1/

d;r
Id�r;r

� �

�

�
C

MX
rD1

�r;r C � ln.1 � �=�/

!
:
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Incomplete Beta Function
Beta function with integer parameters is used extensively in this work. Related results are sum-
marized here. For positive integer a and b, the beta function is defined by

B.a; b/ D

Z 1

0

ta�1.1 � t /b�1 d t D
.a � 1/Š.b � 1/Š

.a C b � 1/Š
:

The (regularized) incomplete beta function is defined as

Ia;b.x/ D

R x

0
ta�1.1 � t/b�1 d t

B.a; b/
(B.1)

D

aCb�1X
j Da

 
a C b � 1

j

!
xj .1 � x/aCb�1�j :

For more general discussion of beta functions, as well as incomplete beta functions, please refer
to [106].

Using the above definitions, we can easily show thatZ 1

0

Ia;b.x/ d x D
b

a C b
; (B.2)

and

IaC1;b.x/ D Ia;b.x/ �
xa.1 � x/b

aB.a; b/
: (B.3)

Lemma B.1 IaC1;b.x/

Ia;b.x/
is monotonically increasing in x.

Proof. By (B.3),

IaC1;b.x/

Ia;b.x/
D 1 �

xa.1 � x/b

aB.a; b/ Ia;b.x/

D 1 �
1

aB.a; b/
PaCb�1

j Da

�
aCb�1

j

�
xj �a.1 � x/a�1�j

D 1 �
1

aB.a; b/
Pb�1

j D0

�
aCb�1

j Ca

�
xj .1 � x/�1�j

;
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in which xj .1 � x/�1�j is monotonically increasing. �

Lemma B.2 When b�1
aC1

�
�

1��
where 0 < � < 1, IaC1;b.x/

Ia;b.x/
� 1 �

�
b
for 0 < x � 1 � � with

equality when b D 1 and x D 1 � �.

Proof. Since IaC1;b.x/

Ia;b.x/
is monotonically increasing in x (cf. Lemma B.1), it is sufficient to show

IaC1;b.1��/

Ia;b.1��/
� 1 �

�
b
. Since a C 1 � .b � 1/1��

�
,

Ia;b.1 � �/ D

aCb�1X
j Da

 
a C b � 1

j

!
.1 � �/j �aCb�1�j

� b

 
a C b � 1

a

!
.1 � �/a�b�1;

where the equality holds for b D 1. Thus,

IaC1;b.1 � �/

Ia;b.1 � �/
D 1 �

.1 � �/a�b

aB.a; b/ Ia;b.1 � �/

� 1 �
.1 � �/a�b

abB.a; b/
�

aCb�1
a

�
.1 � �/a�b�1

D 1 �
�

b
:

�

We will use the following result about the summation of binomial coefficients:

nX
j D0

.�1/j �n

 
j C m

n

! 
n

j

!
D 1; m � n: (B.4)
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The above equality can be verified as follows:

nX
j D0

.�1/j �n

 
j C m

n

! 
n

j

!
D

nX
j D0

.�1/j �n

 
j C m

j C m � n

! 
n

j

!
D

nX
j D0

.�1/j �n.�1/j Cm�n

�

 
�j � m C j C m � n � 1

j C m � n

! 
n

j

!
(B.5)

D

nX
j D0

.�1/m

 
�n � 1

j C m � n

! 
n

n � j

!
D .�1/m

 
�1

m

!
(B.6)

D 1; (B.7)

where (B.6) follows from Vandermonde’s identity; (B.5) and (B.7) use the relation between
binomial coefficients with negative integers and positive integers.

Lemma B.3 For r � 1,

1X
dDrC1

1

d � 1
Id�r;r.x/ D � ln.1 � x/; x 2 Œ0; 1/:

Proof. As a special case, when r D 1, the equality becomes

1X
dD2

xd�1

d � 1
D � ln.1 � x/; (B.8)

which is the Taylor expansion of � ln.1 � x/ for x 2 Œ0; 1/.
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To prove the general case, let us first derive an alternative form of Id�r;r.x/. For a > 0,

Ia;b.x/

D

aCb�1X
j Da

 
a C b � 1

j

!
xj

aCb�1�jX
iD0

.�1/i

 
a C b � 1 � j

i

!
xi

D

aCb�1X
mDa

xm

mX
j Da

 
a C b � 1

j

!
.�1/m�j

 
a C b � 1 � j

m � j

!

D

aCb�1X
mDa

.�x/m

 
a C b � 1

m

!
mX

j Da

 
m

j

!
.�1/j

D

aCb�1X
mDa

.�x/m

 
a C b � 1

m

! 
m � 1

a � 1

!
.�1/a

D b

 
a C b � 1

b

!
.�1/a

aCb�1X
mDa

.�x/m

m

 
b � 1

m � a

!
:

Using this form for Id�r;r.x/, we have

1X
dDrC1

1

d � 1
Id�r;r.x/

D

1X
dDrC1

r

d � 1

 
d � 1

r

!
d�1X

mDd�r

 
r � 1

m � d C r

!
.�1/m�dCr xm

m

D

1X
mD1

xm

m
Am; (B.9)

where

Am ,
mCrX

dDmaxfm;rgC1

r

d � 1

 
d � 1

r

! 
r � 1

m � d C r

!
.�1/m�dCr :
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For m � r ,

Am D

mCrX
dDrC1

r

d � 1

 
d � 1

r

! 
r � 1

m � d C r

!
.�1/m�dCr

D

mCrX
dDrC1

 
d � 2

r � 1

! 
r � 1

m � d C r

!
.�1/m�dCr

D

m�1X
j D0

 
j C r � 1

r � 1

! 
r � 1

m � j � 1

!
.�1/m�j �1

D

m�1X
j D0

 
j C r � 1

m � 1

! 
m � 1

m � j � 1

!
.�1/m�j �1

D 1;

where the last equality follows from (B.4). Similarly, for m > r ,

Am D

mCrX
dDmC1

r

d � 1

 
d � 1

r

! 
r � 1

m � d C r

!
.�1/m�dCr

D

mCrX
dDmC1

 
d � 2

r � 1

! 
r � 1

m � d C r

!
.�1/m�dCr

D

r�1X
j D0

 
j C m � 1

r � 1

! 
r � 1

r � j � 1

!
.�1/r�j �1

D 1:

The proof is completed by referring to (B.8) and (B.9) with Am D 1. �
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Vertices of Convex Polytope
We have the necessary and sufficient condition of a vertex of a convex polytope [108].

Theorem C.1 Let F D fx 2 .RC/n W Ax D bg, where A 2 Rm�n has a rank equal to m. A point
x 2 F is a vertex of F if and only if there exists an index partition .B; N / of f1; 2; : : : ; ng such that

jBj D rk.AB/ D m; A�1
B b � 0

and
xB D A�1

B b; xN D 0;

whereAB is the submatrix ofA of columns with indices inB , xB (xN ) are subvector of x of components
with indices in B (N ).

Let us identify the vertices of

D� D

(
h 2 .RC/M

W

MX
iD1

hi � 1;

MX
iD1

ihi D �

)
:

To apply the above theorem, we define

D�
� D

(
.h0; h/ 2 RC

� D� W

MX
iD0

hi D 1

)
:

We see that D� is the image of D�
� under the projection P defined by .h0; h1; : : : ; hM / 7!

.h1; : : : ; hM /. We first find the vertices set A� of D�
� using the above theorem and then take

the image A of A� under the projection P . We know that A is a subset of D� and includes all
vertices of D�.

Let
A D

�
0 1 � � � M

1 1 � � � 1

�
; b D

�
�

1

�
:

We have
D�

� D fh 2 .RC/M C1
W Ah D bg:

All the vertices ofD�
� are given as follows. For all integers i; j such that i < � and j � �, vector

.h0; h1; : : : ; hM / 2 .RC/M C1 with hi D
j ��
j �i

and hj D
��i
j �i

is a vertex of D�
�.
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Proofs about Finite-length
Analysis

D.1 PROOFOFTHEOREM7.1
D.1.1 INITIAL STATUSOFBPDECODING
The subscripts of R

.t/
n and C

.t/
n are omitted in this proof. Let N‚

.t/
s be the set of indices of batches

that both the degree and the rank at time t equal to s. In other words, a batch with index in N‚
.t/
s ,

s > 0, is decodable and can decode s symbols. Let ‚.t/ be the set of indices of batches that are
not in N‚.t/ , [M

sD0
N‚

.t/
s . We see that R.t/ D j [i2 N‚.t/ A

.t/
i j, which is valid since A

.t/
i D ; for

i 2 N‚
.t/
0 . Also, we see that C .t/ D j‚.t/j.
We first calculate ƒ

.0/
n Œc; r� D PrfC .0/ D c; R.0/ D rg. When t D 0, a batch with degree

s has the probability ‰s and is decodable with probability „0
s (see (2.7) for the definition of „0

s).
Therefore, the probability that a batch is in N‚

.0/
s is ‰s„0

s , i.e., for 1 � i � n and 0 � s � M ,

Pr
n
i 2 N‚.0/

s

o
D p0;s , ‰s„

0
s:

Hence,

Pr
n
i 2 N‚.0/

o
D

MX
sD0

p0;s , �0: (D.1)

Since all batches are independently generated, we have

Pr
n
C .0/

D k
o

D Pr
n
j‚.0/

j D k
o

D Bi.kI n; 1 � �0/: (D.2)

When �0 D 0, PrfC .0/ D n; R.0/ D 0g D 1 and the formula in (7.3) holds. Henceforth
in this subsection, we assume �0 > 0. Recall Q0 defined in (7.5).

LemmaD.1 We have for k D 0; 1; : : : ; n,�
Pr
n
R.0/

D j jC .0/
D n � k

o
W j D 0; : : : ; K

�
D e0Qk

0 ;

where e0 D .1; 0; : : : ; 0/.
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Proof. Fix n. If k D 0, then N‚.0/ D ;, and hence PrfR.0/ D 0jC .0/ D ng D 1, i.e., the lemma
with k D 0 is proved. Henceforth, we assume k > 0. The condition C .0/ D n � k means that k

batches becomes decodable at time 0. Suppose that N‚.0/ D f1; : : : ; kg, which does not change
the distribution of R.0/. Define Z0 � 0 as a constant random variable on f0; 1; : : : ; Kg, and
for r D 1; : : : ; k define Zr D j [r

mD1 Amj. These random variables are defined under the con-
dition f N‚.0/ D f1; : : : ; kgg , E. Note that Zk D R.0/. Since the contributors of each batch
are independently chosen, Z0; : : : ; Zk forms a Markov chain. Specifically, for j < i , PrfZr D

j jZr�1 D ig D 0 and for j � i ,

PrfZr D j jZr�1 D ig D Pr
˚
j [

r
mD1 Amj D j

ˇ̌
j [

r�1
mD1 Amj D j; E

	
D

jX
sDj �i

Pr
˚
j [

r
mD1 Amj D j

ˇ̌
j [

r�1
mD1 Amj D i; jAr j D s; E

	„ ƒ‚ …
.a/

� Pr
˚
jAr j D s

ˇ̌
j [

r�1
mD1 Amj D i; E

	„ ƒ‚ …
.b/

:

Term .a/ is a hypergeometric distribution hyge.s � j C i I K; i; s/. Term .b/ is equal to
Pr
˚
jAr j D s

ˇ̌
r 2 N‚.0/

	
D

p0;s

�0
for s � M and zero otherwise. Overall, we have PrfZr D

j jZr�1 D ig D Q0Œi; j �, independent of r . Therefore, Z0; : : : ; Zk forms a homogeneous
Markov chain with transition matrix Q0. The proof is completed by noting that e0 is the prob-
ability vector corresponding to the distribution of Z0. �

By (D.2) and Lemma D.1, we have

ƒ.0/
n Œc; W� D .PrfC .0/

D c; R.0/
D j g W j D 0; : : : ; K/

D PrfC .0/
D cg.PrfR.0/

D j jC .0/
D cg W j D 0; : : : ; K/

D Bi.cI n; 1 � �0/e0Qn�c
0 ;

which proves (7.3).

D.1.2 RECURSIVE FORMULA
Consider t > 0 and we prove the recursion of ƒ

.t/
n in (7.4). Define event Et as fR.�/ > 0; � < tg,

i.e.,

Et D

n
[

M
sD1

N‚.�/
s ¤ ;; � < t

o
:
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We have for t > 0

ƒ.t/
n Œc; r� D Pr

n
C .t/

D c; R.t/
D r; R.�/ > 0; � < t

o
D

X
c0;r 0>0

Pr
n
C .t/

D c; C .t�1/
D c0; R.t/

D r; R.t�1/
D r 0; R.�/ > 0; � < t

o
D

X
c0;r 0>0

Pr
n
C .t/

D c; R.t/
D r; jC .t�1/

D c0; R.t�1/
D r 0; R.�/ > 0; � < t � 1

o
�ƒ.t�1/

n Œc0; r 0�

D
X

c0;r 0>0

Pr
n
R.t/

D r jC .t/
D c; C .t�1/

D c0; R.t�1/
D r 0; Et�1

o
„ ƒ‚ …

.c/

�

� Pr
n
C .t/

D cjC .t�1/
D c0; R.t�1/

D r 0; Et�1

o
„ ƒ‚ …

.d/

ƒ.t�1/
n Œc0; r 0�:

We characterize .c/ and .d/ in the above equation respectively. Recall that for t � 1

pt;s , „s

DX
dDsC1

‰d

d

K
hyge.d � s � 1I K � 1; d � 1; t � 1/;

�t ,
P

s pt;s

1 �
Pt�1

�D0

P
s p�;s

:

LemmaD.2 For r 0 > 0 and c0 � c,

Pr
n
C .t/

D cjC .t�1/
D c0; R.t�1/

D r 0; Et�1

o
D Bi.cI c0; 1 � �t /:

Proof. Under the condition of R.t�1/ D r 0 > 0 and Et�1, the BP decoding does not stop at
time t � 1. Note that if c0 D 0, i.e., all the batches are decodable at time t � 1, then C .t/ D 0

with probability one. We henceforth assume c0 > 0 in this proof. Since ‚.0/ � ‚.1/ � � � � �

‚.t�1/, we have C .�/ > 0 for � D 0; 1; : : : ; t � 1. We consider a special instance of the condition
C .t�1/ D c0, R.t�1/ D r 0 and Et�1 such that the input symbol decoded from time � � 1 to � has
index � � 1 for 1 � � � t , and study the probability of j 2 N‚

.�/
s \ ‚.��1/ under this instance.

Since the probability to be obtain does not depend on the instance, the probability is equal to
the probability of the lemma. To simplify the notation, the condition C .t�1/ D c0, R.t�1/ D r 0

and Et�1 is omitted in the remainder of the proof.
For � D 1; : : : ; t , we first study Prfj 2 N‚

.�/
s \ ‚.��1/g for an arbitrary batch j . There are

totally � input symbols decoded at time � , where � � 1 is the index of the input symbol decoded
at the step from � � 1 to � . Given the initial degree of batch j being d , j 2 N‚

.�/
s \ ‚.��1/ is

equivalent to
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(1) � � 1 2 Aj ,

(2) jA
.�/
j j D s, and

(3) rk.G.��1/
j Hj / D rk.G.�/

j Hj / D s.

Since all batches are formed independently, we know that (1) holds with probability d=K;
given (1) the probability that (2) holds is the hypergeometric distribution hyge.d � s � 1I K �

1; � � 1; d � 1/; given both (1) and (2) the probability that (3) holds is „s (see (2.6)). Therefore,
the probability for (1), (2) and (3) to hold given jAj j D d is

d

K
„shyge.d � s � 1I K � 1; � � 1; d � 1/:

Hence, after considering the distribution of the degree,

Pr
n
j 2 N‚.�/

s \ ‚.��1/
o

D p�;s: (D.3)

Now we study Prfj 2 ‚.�/g. Since ‚.�/, N‚
.�/
s \ ‚.��1/, s D 0; 1; : : : ; M forms a partition

of ‚.��1/,

Pr
n
j 2 ‚.��1/

o
D Pr

n
j 2 ‚.�/

o
C

MX
sD0

Pr
n
j 2 N‚.�/

s \ ‚.��1/
o

D Pr
n
j 2 ‚.�/

o
C

MX
sD0

p�;s:

Using Prfj 2 ‚.0/g D 1 �
PM

sD0 p0;s (see (D.1)), we obtain that

Pr
n
j 2 ‚.�/

o
D 1 �

�X
� 0D0

MX
sD0

p� 0;s:

Hence we have

Pr
n
j 2 N‚.t/

jj 2 ‚.t�1/
o

D
Prfj 2 N‚.t/ \ ‚.t�1/g

Prfj 2 ‚.t�1/g
D �t : (D.4)

In other words, for a batch in ‚.t�1/, it would stay in ‚.t/ with probability 1 � �t . Since batches
in ‚.t�1/ stay in ‚.t/ independently, for B � f1; : : : ; ng with jBj D c0,

Pr
n
C .t/

D cj‚.t�1/
D B; R.t�1/

D r 0; Et�1

o
D Pr

n
j‚.t/

j D cj‚.t�1/
D B; R.t�1/

D r 0; Et�1

o
D Bi.cI c0; 1 � �t /:
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Since the above distribution depends on B only through its cardinality, we have

Pr
n
C .t/

D cjC .t�1/
D c0; R.t�1/

D r 0; Et�1

o
D

X
B�f1;:::;ngWjBjDc0

PrfC .t/
D cj‚.t�1/

D B; R.t�1/
D r 0; Et�1g

� Prf‚.t�1/
D BjC .t�1/

D c0; R.t�1/
D r 0; Et�1g

D Bi.cI c0; 1 � �t /:

The proof of the lemma is completed. �

Assume
PM

sD0 pt;s > 0, which holds when BP decoding can start (see Lemma 7.3).

LemmaD.3 For r 0 > 0 and c0 � c,

Pr
n
R.t/

D r jC .t/
D c; C .t�1/

D c0; R.t�1/
D r 0; Et�1

o
D .Qc0�c

t /Œr 0
� 1; r�:

Proof. First, if c D c0, then Qc0�c
t is the identitymatrix, and no batches become decodable for the

first time at time t . Therefore, R.t/ D R.t�1/ � 1, which proves the lemma with c D c0. Hence-
forth, we assume c0 > c. Consider an instance of fC .t/ D c; C .t�1/ D c0; R.t�1/ D r 0; Et�1g

with ‚.t�1/ n ‚.t/ D f1; : : : ; c0 � cg. We will compute the distribution of R.t/ by assuming this
instance. Since the distribution we will obtain only depends on the instance through c, c0 and
r 0, the distribution of R.t/ under the condition fC .t/ D c; C .t�1/ D c0; R.t�1/ D r 0; Et�1g is the
same.

Let A be the set of indices of decodable input symbols at time t � 1, excluding the input
symbol decoded from time t � 1 to t . We have jAj D r 0 � 1, which is valid since r 0 > 0. Since
batches with index in B 0 n B become decodable only starting at time t , we have R.t/ D jA [

.[ı
iD1A

.t/
i /j. We use a similar method as in Lemma D.1 to compute the distribution of R.t/.

Define Z0 � jAj as a constant random variable on f0; 1; : : : ; K � tg, and for r D 1; : : : ; c0 � c

define Zr D jA [r
mD1 Amj. Note that Zc0�c D R.t/. Since the contributors of each batch are

independently chosen, Z0; : : : ; Zc0�c forms a Markov chain. Specifically, for j < i , PrfZr D

j jZr�1 D ig D 0 and for j � i ,

PrfZr D j jZr�1 D ig D Pr
n
jA [ .[r

mD1A.t/
m /j D j

ˇ̌
jA [ .[r�1

mD1A.t/
m /j D i

o
D

jX
sDj �i

Pr
n
jA.t/

r j D s
ˇ̌
jA [ .[r�1

mD1A.t/
m /j D i

o
„ ƒ‚ …

.e/

� Pr
n
jA [ .[r

mD1A.t/
m /j D j

ˇ̌
jA [ .[r�1

mD1A.t/
m /j D i; jA.t/

r j D s
o

„ ƒ‚ …
.f /

:
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Term .e/ is equal to Prfr 2 N‚
.t/
s jr 2 ‚.t�1/ \ N‚.t/g D

pt;sP
s pt;s

(see (D.3)) for s � M . Term
.f / is a hypergeometric distribution hyge.s � j C i I K � t; i; s/. Overall, we have PrfZr D

j jZr�1 D ig D Qt Œi; j �, independent of r . Therefore, Z0; : : : ; Zc0�c forms a homogeneous
Markov chain with transition matrix Qt . The proof is completed by considering the transition
matrix from Z0 to Zc0�c . �

Now we are ready to complete the proof of Theorem 7.1. With the above two lemmas, we
can write

ƒ.t/
n Œc; W� D

X
c0;r 0>0

.Qc0�c
t /Œr 0

� 1; W�Bi.cI c0; 1 � �t /ƒ
.t�1/
n Œc0; r 0�

D
X
c0�c

Bi.cI c0; 1 � �t /ƒ
.t�1/
n Œc0; 1W�Qc0�c

t :

This completes the proof of Theorem 7.1.

D.2 PROOFSOF SEVERALPROPERTIES
Proof of Lemma 7.4. The first claim can be proved by induction over t . First 1 � �0 D 1 � p0 by
definition. Suppose that (1) holds for certain t � 0. We have

QtC1
�D0.1 � �� / D .1 � �tC1/.1 �Pt

�D0 p� / D 1 �
PtC1

�D0 p� , where the first equality follows by the induction hypothesis and the
second equality follows the definition of �t . To prove the second claim, we have �t

Qt�1
�D0.1 �

�� / D �t .1 �
Pt�1

�D0 p� / D pt , where the first equality follows by (1) and the second equality
follows the definition of �t . �

Proof of Lemma 7.10. We first prove the formula of U�1
t . Let U0

t be an upper-triangular matrix
with U0

t Œi; j � D .�1/j �i
�

K�t�i
j �i

�
for i � j . We check that UtU0

t D I. We write

.UtU0
t /Œi; j � D

jX
kDi

Ut Œi; k�U0
t Œk; j �: (D.5)

When i D j , it is clear that .UtU0
t /Œi; i � D 1. Since UtU0

t is upper triangular, we verify that
.UtU0

t /Œi; j � D 0 for j > i . Expanding the RHS of (D.5), we get

.UtU0
t /Œi; j � D

jX
kDi

 
K � t � i

k � i

!
.�1/j �k

 
K � t � k

j � k

!
D

 
K � t � i

j � i

!
jX

kDi

.�1/j �k

 
j � i

k � i

!
D

 
K � t � i

j � i

!
j �iX
kD0

.�1/j �i�k

 
j � i

k

!
D 0:
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Therefore, U�1
t D U0

t .
To complete the proof, we need to verify the equality Qt D UtDtU�1

t . Write

.UtDtU�1
t /Œi; j � D

jX
kDi

 
K � t � i

k � i

!
Qt Œk; k�.�1/j �k

 
K � t � k

j � k

!
D

 
K � t � i

j � i

!
jX

kDi

.�1/j �kQt Œk; k�

 
j � i

k � i

!
:

When i D j , it is clear that .UtDtU�1
t /Œi; i � D Qt Œi; i �. Since UtDtU�1

t is upper triangular, we
consider j > i henceforth. By the definition of Qt Œk; k�, we have

jX
kDi

.�1/j �kQt Œk; k�

 
j � i

k � i

!
D

jX
kDi

.�1/j �k

 
j � i

k � i

!
k^MX
sD0

pt;s

pt

�
k
s

��
K�t

s

�
D

j ^MX
sD0

pt;s

pt

�
K�t

s

� jX
kDi_s

.�1/j �k

 
j � i

k � i

! 
k

s

!
:

In the following, we show that
jX

kDi_s

.�1/j �k

 
j � i

k � i

! 
k

s

!
D

(�
i

s�j Ci

�
j � i � s � j;

0 s < j � i;
(D.6)

which completes the proof that .UtDtU�1
t /Œi; j � D Qt Œi; j �.

The proof of (D.6) using binomial coefficients with negative integers. We write
jX

kDi_s

.�1/j �k

 
j � i

k � i

! 
k

s

!
D

jX
kDi_s

.�1/j �k

 
j � i

j � k

! 
k

k � s

!
D

jX
kDi_s

.�1/j �k

 
j � i

j � k

!
.�1/k�s

 
�s � 1

k � s

!
D .�1/j �s

jX
kDi_s

 
j � i

j � k

! 
�s � 1

k � s

!
D .�1/j �s

 
j � i � s � 1

j � s

!
;

where the last equality is obtained by Vandermonde’s identity by considering the two cases i < s

and i � s. Note that when s < j � i ,
�

j �i�s�1
j �s

�
D 0. Otherwise,

.�1/j �s

 
j � i � s � 1

j � s

!
D

 
i

j � s

!
:

The proof of the lemma is completed. �
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D.3 PROOFSABOUT STOPPINGTIMEDISTRIBUTION

Proof ofTheorem 7.8. We will show that for 1 � c � n and t � 0,

ƒ.t/
n Œc; W� D

n

c

tY
iD0

.1 � �i /ƒ
.t/
n�1Œc � 1; W�: (D.7)

By expanding the above recursive formula, we have for c � 0 and t � 0,

ƒ.t/
n Œc; W� D

 
n

c

!
tY

iD0

.1 � �i /
cƒ.t/

n�cŒ0; W�: (D.8)

Substituting (D.8) into (7.2) and by Lemma 7.4, we get

Pstop.t jn/ D

nX
cD0

 
n

c

!
tY

iD0

.1 � �i /
cƒ.t/

n�cŒ0; 0� D

nX
cD0

 
n

c

! 
1 �

tX
�D0

p�

!c

ƒ.t/
n�cŒ0; 0�;

proving (7.6). Further, (7.7) is obtained by (7.3) for c D 0. To prove (7.8), we have

ƒ.t/
n Œ0; W� D

nX
cD0

�c
t ƒ.t�1/

n Œc; 1W�Qc
t

D

nX
cD0

 
n

c

!
�c

t

t�1Y
iD0

.1 � �i /
cƒ.t�1/

n�c Œ0; 1W�Qc
t

D

nX
cD0

 
n

c

!
pc

t ƒ.t�1/
n�c Œ0; 1W�Qc

t

where the first equality follows from (7.4) with c D 0, the second equality is obtained by sub-
stituting (D.8), and the last step is obtained by applying Lemma 7.4.

Now we prove (D.7) by induction. When t D 0, we have by Theorem 7.1 that

ƒ.0/
n Œc; W� D Bi.cI n; 1 � �0/Qn�c

0 Œ0; W�

D
n

c
.1 � �0/Bi.c � 1I n � 1; 1 � �0/Q.n�1/�.c�1/

0 Œ0; W�

D
n

c
.1 � �0/ƒ

.0/
n�1Œc � 1; W�: (D.9)
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Suppose that (D.7) holds for t � 0. Applying the recursive formula of Theorem 7.1, we can show
that

ƒ
.t/
nC1Œc; W� D

nC1X
c0Dc

Bi.cI c0; 1 � �t /ƒ
.t�1/
nC1 Œc0; 1W�Qc0�c

t

D

nC1X
c0Dc

Bi.cI c0; 1 � �t /
n C 1

c0

t�1Y
iD0

.1 � �i /ƒ
.t�1/
n Œc0

� 1; 1W�Qc0�c
t

D
n C 1

c

tY
iD0

.1 � �i /

nC1X
c0Dc

Bi.c � 1I c0
� 1; 1 � �t /ƒ

.t�1/
n Œc0

� 1; 1W�Qc0�c
t

D
n C 1

c

tY
iD0

.1 � �i /

nX
c00Dc�1

Bi.c � 1I c00; 1 � �t /ƒ
.t�1/
n Œc00; 1W�Qc00�.c�1/

t

D
n C 1

c

tY
iD0

.1 � �i /ƒ
.t/
n Œc � 1; W�:

The proof is completed. �

Proof ofTheorem 7.11. We first show

ƒ.t/
n Œ0; W� D

2t �1X
iD0

Vt;i�
n
t;iU�1

t (D.10)

by induction in t . The claim for t D 0 can be shown by replacing p0Q0 in (7.7) with the de-
composition in Lemma 7.10. Suppose that the claim of the theorem holds for certain t � 0.
Substituting this form of ƒt

n into (7.8) with t C 1 in place of t , we obtain

ƒ.tC1/
n D

nX
cD0

 
n

c

!
2t �1X
iD0

Vt;i�
n
t;iU�1

t ŒW; 1W�.ptC1QtC1/c

D

2t �1X
iD0

Vt;i

nX
cD0

 
n

c

!
�n�c

t;i U�1
t ŒW; 1W�UtC1.ptC1DtC1/cU�1

tC1:

Using the same technique as proving (D.6), we can verify that

U�1
t ŒW; 1W�UtC1 D

�
�Ut Œ0; 1W�

I

�
D

�
�Ut Œ0; 1W�

0

�
C

�
0
I

�
: (D.11)
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Substituting the above equation into (D.11), we get

ƒ.tC1/
n D

2t �1X
iD0

Vt;i

nX
cD0

 
n

c

!
�n�c

t;i

�
0
I

�
.ptC1DtC1/cU�1

tC1

C

2t �1X
iD0

Vt;i

nX
cD0

 
n

c

!
�n�c

t;i

�
�Ut Œ0; 1W�

0

�
.ptC1DtC1/cU�1

tC1

D

2t �1X
iD0

Vt;i Œ1W�

nX
cD0

 
n

c

!
.�t;i Œ1W; 1W�/n�c.ptC1DtC1/cU�1

tC1

�

2t �1X
iD0

Vt;i Œ0�Ut Œ0; 1W�

nX
cD0

 
n

c

!
.�t;i Œ0; 0�/n�c.ptC1DtC1/cU�1

tC1 (D.12)

D

2t �1X
iD0

Vt;i Œ1W� .�t;i Œ1W; 1W� C ptC1DtC1/n U�1
tC1

�

2t �1X
iD0

Ut Œ0; 1W�Vt;i Œ0� .�t;i Œ0; 0�I C ptC1DtC1/n U�1
tC1; (D.13)

where (D.12) is obtained by noting �t;i is diagonal and (D.13) is obtained by combining the
binomial terms. The proof of (D.10) is completed by checking the definition of VtC1;i and
�tC1;i .

Substituting the formula of ƒ
.t/
n Œ0; W� in (D.10) into (7.6), we get

Pstop.t jn/ D

nX
cD0

 
n

c

! 
1 �

tX
�D0

p�

!c 2t �1X
iD0

Vt;i�
n�c
t;i U�1

t ŒW; 0�

D

nX
cD0

 
n

c

! 
1 �

tX
�D0

p�

!c 2t �1X
iD0

Vt;i Œ0��n�c
t;i Œ0; 0�

D

2t �1X
iD0

Vt;i Œ0�

nX
cD0

 
n

c

! 
1 �

tX
�D0

p�

!c

.�t;i Œ0; 0�/n�c

D

2t �1X
iD0

Vt;i Œ0�

 
1 �

tX
�D0

p� C �t;i Œ0; 0�

!n

;

where the second equality is obtained using the facts that (i) �t;i is diagonal, (ii) U�1
t is upper-

triangular, and (iii) U�1
t Œ0; 0� D 1. �

Proof ofTheorem 7.12. For 0 � t � K and 0 � i � K � t , let

�t;i D ptQt Œi; i � D ptDt Œi; i � D

i^MX
sD0

pt;s

�
i
s

��
K�t

s

� ; (D.14)
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with which we can rewrite

qt D 1 �

tX
�D0

p� C

tX
�D0

��;t�� :

Using Lemma 7.3 and the definition of �t;j , we have that

�t;j D 0; when 0 � t < rBP; t C j < rBPI (D.15)
�t;j > �t;j �1; when 0 � t < rBP; t C j � rBPI (D.16)

0 < �t;0 < �t;1 < : : : < �t;K�t ; when t � rBP: (D.17)

We further show inductively that for i D 0; 1; : : : ; 2t � 1,

�t;i Œj; j � D 0; when t C j < rBP; (D.18)
�t;i Œj; j � > �t;i Œj � 1; j � 1�; when t C j � rBP: (D.19)

By the definition of �0;0 in Theorem 7.11, we write �0;0Œj; j � D p0D0Œj; j � D �0;j , which, to-
gether with (D.15)–(D.17) with t D 0, implies (D.18) and (D.19) for t D 0. Suppose that (D.18)
and (D.19) hold for certain t � 0. By the recursive formula in Theorem 7.11, we have for
i D 0; 1; : : : ; 2t � 1,

�tC1;i Œj; j � D �t;i Œj C 1; j C 1� C ptC1DtC1Œj; j � D �t;i Œj C 1; j C 1� C �tC1;j ;

�tC1;2t Ci Œj; j � D �t;i Œ0; 0� C ptC1DtC1Œj; j � D �t;i Œ0; 0� C �tC1;j :

When t C 1 C j < rBP, by the induction hypothesis, we have �t;i Œj C 1; j C 1� D 0

and �t;i Œ0; 0� D 0, and by (D.15), we have �tC1;j D 0. Therefore, �tC1;i Œj; j � D 0 and
�tC1;2t Ci Œj; j � D 0 when t C 1 C j < rBP, which completes the proof of (D.18). When
t C 1 C j � rBP, by the induction hypothesis, we have �t;i Œj C 1; j C 1� > �t;i Œj; j �, and
by (D.16) or (D.17), we have �tC1;j > �tC1;j �1. Therefore, �tC1;i Œj; j � > �tC1;i Œj; j � and
�tC1;2t Ci Œj; j � > �tC1;2t Ci Œj; j � when t C 1 C j � rBP, which completes the proof of (D.19).

Now we are ready to prove (i) and (ii) of the theorem. When t D 0, by Theorem 7.11 and
�0;0 D 0, we have Pstop.0jn/ D V0;0Œ0�

�
1 �

Pt
�D0 p� C �0;0Œ0; 0�

�n
D qn

0 , proving (i). When
1 � t < rBP, by Theorem 7.11 and (D.18), Pstop.t jn/ D .1 �

Pt
�D0 p� /n

P2t �1
iD0 Vt;i Œ0�. To

prove (ii), we show that for t � 1

2t �1X
iD0

Vt;i D 0: (D.20)

When t D 1, we have

1X
iD0

V1;i D U0Œ0; 1W� � U0Œ0; 0�U0Œ0; 1W� D 0:
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Suppose that (D.20) holds for certain t � 1. We have

2tC1�1X
iD0

VtC1;i D

2t �1X
iD0

Vt;i Œ1W� � Ut Œ0; 1W�

2t �1X
iD0

Vt;i Œ0� D 0:

Before proving (iii) of the theorem, we show by induction that for i D 1; : : : ; 2t � 1,

�t;0Œj; j � > �t;i Œj; j �; when t C j � rBP: (D.21)

The above inequality holds trivially for t D 0. Suppose that (D.21) holds for certain t � 0. When
t C 1 C j � rBP, we have for i D 0; 1; : : : ; 2t � 1,

�tC1;0Œj; j � D �t;0Œj C 1; j C 1� C ptC1DtC1Œj; j �

� �t;i Œj C 1; j C 1� C ptC1DtC1Œj; j � D �tC1;i Œj; j �

> �t;i Œ0; 0� C ptC1DtC1Œj; j � D �tC1;2t Ci Œj; j �;

where the first inequality follows by the induction hypothesis with equality only when i D 0,
and the second inequality follows from (D.18) and (D.19).

Now, we prove (iii) for t � rBP � 1. By (D.21), we know that for i D 1; : : : ; 2t � 1,

�t;0Œ0; 0� > �t;i Œ0; 0�;

and hence
1 �

Pt
�D0 p� C �t;i Œ0; 0�

qt

D
1 �

Pt
�D0 p� C �t;i Œ0; 0�

1 �
Pt

�D0 p� C �t;0Œ0; 0�
< 1: (D.22)

By Theorem 7.11 and noting that Vt;0Œ0� D U0Œ0; t � D
�

K
t

�
> 0, we write

lim
n!1

� log Pstop.t jn/

n

D lim
n!1

� log qn
t

P2t �1
iD0 Vt;i Œ0�.1 �

Pt
�D0 p� C �t;i Œ0; 0�/n=qn

t

n

D � log qt C lim
n!1

� log
�
Vt;0Œ0� C

P2t �1
iD1 Vt;i Œ0�.1 �

Pt
�D0 p� C �t;i Œ0; 0�/n=qn

t

�
n

D � log qt :

The proof is completed. �

D.4 PROOFSABOUTPOISSONNUMBEROFBATCHES
Proof ofTheorem 7.16. Let NQt be a .K C 1/ � .K C 1/ matrix such that NQt Œt W; t W� D Qt , and all
the other components of NQt are zero. For integers n � 0 and t � 0 define .n C 1/ � .K C 1/

matrix Nƒ
.t/
n recursively as follows: (i) Nƒ

.0/
n D ƒ

.0/
n , and ii) for t > 0,

Nƒ.t/
n Œc; W� D

nX
c0Dc

Bi.cI c0; 1 � �t / Nƒ.t�1/
n Œc0; W� NQc0�c

t : (D.23)
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Note that compared with the iterative formula in Theorem 7.1, Nƒ
.t�1/
n in the above formula is

not shortened.
We show that

Nƒ.t/
n ŒW; i � D ƒ.i/

n ŒW; 0�; i D 0; : : : ; t; (D.24)
Nƒ.t/

n ŒW; t C 1W� D ƒ.t/
n ŒW; 1W�; (D.25)

by induction in t . The claim holds for t D 0 by definition. Suppose that (D.24) and (D.25) hold
for certain t � 0. We have by the definition that for 0 � c � n,

Nƒ.tC1/
n Œc; W� D Nƒ.t/

n Œc; W� C

nX
c0DcC1

Bi.cI c0; 1 � �tC1/ Nƒ.t/
n Œc0; W� NQc0�c

tC1 :

Since the first t C 1 columns of NQtC1 are all zero, we have for i D 0; : : : ; t , Nƒ
.tC1/
n Œc; i � D

Nƒ
.t/
n Œc; i � D ƒi

nŒc; 0�. Since the first t C 1 rows of NQtC1 are all zero, we can write

Nƒ.tC1/
n Œc; t C 1W� D Nƒ.t/

n Œc; t C 1W� C

nX
c0DcC1

Bi.cI c0; 1 � �tC1/ Nƒ.t/
n Œc0; t C 1W�Qc0�c

tC1

D

nX
c0Dc

Bi.cI c0; 1 � �tC1/ƒ.t/
n Œc0; 1W�Qc0�c

tC1

D ƒ.tC1/
n Œc; W�;

where the second equality follows from the induction hypothesis and the last equality follows
by Theorem 7.1.

Expending the recursive formula (D.23), we have

Nƒ.t/
n Œc; W� D e0

X
Bi.c0I n; 1 � �0/ NQn�c0

0 �

�Bi.c1I c0; 1 � �1/ NQc0�c1

1 � � � � � Bi.cI ct�1; 1 � �t / NQct�1�c
t

D e0

X 
n

c0

!
.1 � �0/c0.�0

NQ0/n�c0� (D.26)

�

 
c0

c1

!
.1 � �1/c1.�1

NQ1/c0�c1 � � � � �

 
ct�1

c

!
.1 � �t /

c.�t
NQt /

ct�1�c ;

where the summation is over all .c0; : : : ; ct�1/ such that n � c0 � c1 � � � � � ct�1 � c. Reorga-
nizing (D.26) using Lemma 7.4, we obtain

Nƒ.t/
n Œc; W� D e0

X 
n

c0

! 
c0

c1

!
� � �

 
ct�1

c

!�
ptC1

�tC1

�c �
p0

NQ0

�n�c0
�
p1

NQ1

�c0�c1
� � �
�
pt

NQt

�ct�1�c
:

Define
Lƒ

.t/
Nn D

X
n

Nnn

nŠ
e� Nn

X
c

Nƒ.t/
n Œc; W�:
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By (7.16), (D.24), and (D.25), we have

Lƒ
.t/
Nn Œt W� D Qƒ

.t/
Nn : (D.27)

Substituting the expression of Nƒ
.t/
n Œc; W� and using the fact that 

n

c0

! 
c0

c1

!
� � �

 
ct�1

c

!
D

nŠ

.n � c0/Š.c0 � c1/Š � � � .ct�1 � c/ŠcŠ
;

we have

Lƒ
.t/
Nn D e0

X
e� Nn

�
Nn

ptC1

�tC1

�c

cŠ

. Nnp0
NQ0/n�c0

.n � c0/Š

. Nnp1
NQ1/c0�c1

.c0 � c1/Š
� � �

. Nnpt
NQt /

ct�1�c

.ct�1 � c/Š
;

where the summation is over all .n; c0; : : : ; ct�1; c/ such that n � c0 � c1 � � � � � ct�1 � c.
Let xtC1 D c, x0 D n � c0, xt D ct�1 � c and x� D c��1 � c� for 1 � � � t � 1. We can

rewrite the above expression as

Lƒ
.t/
Nn D e0

X
x� W�D0;:::;tC1

e� Nn

�
Nn

ptC1

�tC1

�xtC1

xtC1Š

. Nnp0
NQ0/x0

x0Š

. Nnp1
NQ1/x1

x1Š
� � �

. Nnpt
NQt /

xt

xt Š

D e0e� Nn
X
xtC1

�
Nn

ptC1

�tC1

�xtC1

xtC1Š

X
x0

. Nnp0
NQ0/x0

x0Š

X
x1

. Nnp1
NQ1/x1

x1Š
� � �
X
xt

. Nnpt
NQt /

xt

xt Š

D e0e� Nn exp
�

Nn
ptC1

�tC1

�
exp

�
Nnp0

NQ0

�
exp

�
Nnp1

NQ1

�
� � � exp

�
Nnpt

NQt

�
(D.28)

D e0 exp
�

�Nn

�
1 �

ptC1

�tC1

��
exp

�
Nnp0

NQ0

�
exp

�
Nnp1

NQ1

�
� � � exp

�
Nnpt

NQt

�
D e0 exp

 
�Nn

 
tX

�D0

p�

!!
exp

�
Nnp0

NQ0

�
exp

�
Nnp1

NQ1

�
� � � exp

�
Nnpt

NQt

�
; (D.29)

where (D.28) is obtained using the definition of matrix exponential, and (D.29) follows from
the definition of �t . Thus, we have

Lƒ
.t/
Nn D exp .�Nnpt / Lƒ

.t�1/
Nn exp

�
Nnpt

NQt

�
with Lƒ0

Nn D Qƒ0
Nn given in (7.19). The proof is complete by noting (D.27) and exp. Nnpt

NQt / D�
I

exp. NnptQt /

�
. �

Proof ofTheorem 7.17. We prove the theorem using

QPstop.t j Nn/ D

2t �1X
iD0

Vt;i Œ0� exp
 

�Nn

 
tX

�D0

p� � �t;i Œ0; 0�

!!
:
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When t D 0, we have QPstop.0j Nn/ D V0;0Œ0� exp .�Nn .p0 � �0;0Œ0; 0�// D

exp .�Nn .p0 � �0;0// D exp.�Nnp0/, where the last equality follows from �0;0 D 0 (see (D.15)).
Hence (i) is proved by noting q0 D 1 � p0. When 1 � t < rBP, since �t;i Œ0; 0� D 0 (see (D.18)),
we have QPstop.t j Nn/ D exp

�
�Nn

Pt
�D0 p�

�P2t �1
iD0 Vt;i Œ0� D 0, where the last equality follows

from (D.20), proving (ii). To prove (iii), by (D.22) and Vt;0Œ0� D U0Œ0; t � D
�

K
t

�
> 0, we write

lim
Nn!1

� log QPstop.t j Nn/

Nn

D lim
Nn!1

� log exp.�Nn.1 � qt //
P2t �1

iD0 Vt;i Œ0� exp
�
�Nn

�Pt
�D0 p� � �t;i Œ0; 0� � 1 C qt

��
Nn

D 1 � qt :

The proof is completed. �
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A P P E N D I X E

Proofs about Inactivation
Proof ofTheorem 8.1. First, we have ƒ

.0/
n D �

.0/
n by their definitions, proving the formula for

t D 0. For t > 0, define matrices �
t.1/
n and �

t.2/
n as

� .t1/
n Œc; r� D Pr

n
OC .t/

D c; OR.t/
D r; OR.t�1/ > 0

o
� .t2/

n Œc; r� D Pr
n

OC .t/
D c; OR.t/

D r; OR.t�1/
D 0

o
:

Since

� .t/
n D � .t1/

n C � .t2/
n ;

we characterize the two terms on the RHS.
Write

� .t1/
n Œc; r� D

X
c0

X
r 0>0

Prf OR.t/
D r j OC .t/

D c; OC .t�1/
D c0; OR.t�1/

D r 0
g„ ƒ‚ …

.a/

�

� Prf OC .t/
D cj OC .t�1/

D c0; OR.t�1/
D r 0

g„ ƒ‚ …
.b/

� .t�1/
n Œc0; r 0�;

where term .a/ and .b/ can be obtained using Lemma D.3 and Lemma D.2, respectively, since
only normal BP decoding is applied from time t � 1 to t when OR.t�1/ > 0. Similar to the pro-
cedure for obtaining (D.5), we have

� .t1/
n Œc; W� D

X
c0�c

Bi.cI c0; 1 � �t /�
.t�1/
n Œc0; 1W�Qc0�c

t : (E.1)

The components in �
t.2/
n corresponds to the case that inactivation occurs during from

time t � 1 to time t , where an undecoded input symbol is marked as inactive and is treated as
decoded. We write

� .t2/
n Œc; r� D

X
c0

Prf OR.t/
D r j OC .t/

D c; OC .t�1/
D c0; OR.t�1/

D 0g„ ƒ‚ …
.c/

�

� Prf OC .t/
D cj OC .t�1/

D c0; OR.t�1/
D 0g„ ƒ‚ …

.d/

� .t�1/
n Œc0; 0�:
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Since the inactive symbol in the decoding step from time t � 1 to t can be regarded as the only
decodable input symbol in time t � 1, we can obtain .c/ and .d/ using Lemma D.3 with r 0 D 1

and Lemma D.2 with r 0 D 1, respectively. Thus, we have

� t.2/
n Œc; W� D

X
c0�c

Bi.cI c0; 1 � �t /�
.t�1/
n Œc0; 0�e0Qc0�c

t : (E.2)

Combining (E.1) and (E.2), the recursive formula of Theorem 8.1 is proved. �

Proof ofTheorem 8.2. We first show by induction that for 1 � c � n and t � 0,

� .t/
n Œc; W� D

n

c

tY
iD0

.1 � �i /�
.t/
n�1Œc � 1; W�: (E.3)

Since �
.0/
n D ƒ

.0/
n , we have by (D.9) that (E.3) holds with Suppose that (E.3) holds for certain

t � 0. Applying the recursive formula of Theorem 8.1, we can show that

�
.t/
nC1Œc; W� D

nC1X
c0Dc

Bi.cI c0; 1 � �t /�
.t�1/
nC1 Œc0; W�NtQc0�c

t

D

nC1X
c0Dc

Bi.cI c0; 1 � �t /
n C 1

c0

t�1Y
iD0

.1 � �i /�
.t�1/
n Œc0; W�NtQc0�c

t

D
n C 1

c

tY
iD0

.1 � �i /

nC1X
c0Dc

Bi.c � 1I c0
� 1; 1 � �t /�

.t�1/
n Œc0

� 1; W�NtQc0�c
t

D
n C 1

c

tY
iD0

.1 � �i /

nX
c00Dc�1

Bi.c � 1I c00; 1 � �t /�
.t�1/
n Œc00; W�NtQc00�.c�1/

t

D
n C 1

c

tY
iD0

.1 � �i /�
.t/
n Œc � 1; W�:

By expanding (E.3) recursively, we have for c � 0 and t � 0,

� .t/
n Œc; W� D

 
n

c

!
tY

iD0

.1 � �i /
c� .t/

n�cŒ0; W�: (E.4)

Substituting (E.4) into (8.2) and by Lemma 7.4, we get

Pinac.t jn/ D

nX
cD0

 
n

c

!
tY

iD0

.1 � �i /
c� .t/

n�cŒ0; 0� D

nX
cD0

 
n

c

! 
1 �

tX
�D0

p�

!c

� .t/
n�cŒ0; 0�;
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proving the formula of Pinac.t jn/. Further, (8.6) is obtained by (8.3) for c D 0. To prove (8.7),
we have

� .t/
n Œ0; W� D

nX
cD0

�c
t � .t�1/

n Œc; W�NtQc
t

D

nX
cD0

 
n

c

!
�c

t

t�1Y
iD0

.1 � �i /
c� .t�1/

n�c Œ0; W�NtQc
t

D

nX
cD0

 
n

c

!
pc

t � .t�1/
n�c Œ0; W�NtQc

t ;

where the first equality follows from (8.4) with c D 0, the second equality is obtained by sub-
stituting (E.4), and the last step is obtained by applying Lemma 7.4. �

Proof ofTheorem 8.3. We first show

� .t/
n Œ0; W� D

2t �1X
iD0

V0
t;i�

n
t;iU�1

t (E.5)

by induction in t . The claim for t D 0 can be shown by replacing p0Q0 in (8.6) with the de-
composition in Lemma 7.10. Suppose that the claim of the theorem holds for certain t � 0.
Substituting this form of ƒt

n into (8.7) with t C 1 in place of t , we obtain

� .tC1/
n Œ0; W� D

2t �1X
iD0

V0
t;i

nX
cD0

 
n

c

!
�n�c

t;i U�1
t NtC1UtC1.ptC1DtC1/cU�1

tC1: (E.6)

We can verify that

U�1
t NtC1UtC1 D .U�1

t ŒW; 0�e0 C U�1
t ŒW; 1W�/UtC1

D

�
UtC1Œ0; W� � Ut Œ0; 1W�

I

�
D

�
UtC1Œ0; W� � Ut Œ0; 1W�

0

�
C

�
0
I

�
;

where the second equality follows from (D.11). Similar to the steps obtaining (D.13), substi-
tuting the above equation into (E.6) and combining the binomial terms, we get

ƒ.tC1/
n D

2t �1X
iD0

V0
t;i Œ1W� .�t;i Œ1W; 1W� C ptC1DtC1/n U�1

tC1

C

2t �1X
iD0

.UtC1Œ0; W� � Ut Œ0; 1W�/V0
t;i Œ0� .�t;i Œ0; 0�I C ptC1DtC1/n U�1

tC1:

The proof of (E.5) is completed by checking the definition of V0
tC1;i and �tC1;i .

Substituting the above formula of �
.t/
n in (E.5) into (8.5), we obtain the following formula

of Pinac.t jn/ given in this theorem. �
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Proof ofTheorem 8.4. When t < rBP, we know that �t;i Œ0; 0� D 0 (see (D.18)). So

Pinac.t jn/ D

 
1 �

tX
�D0

p�

!n 2t �1X
iD0

V0
t;i Œ0� D qn

t

2t �1X
iD0

V0
t;i Œ0�:

It can be shown inductively that
2t �1X
iD0

V0
t;i D Ut Œ0; W�: (E.7)

First, by definition V0
0;0 D U0Œ0; W�. Suppose that (E.7) holds for certain t > 0. We write

2t C1X
iD0

V0
tC1;i D

2t �1X
iD0

V0
t;i Œ1W� C

2t �1X
iD0

V0
t;i Œ0�.UtC1Œ0; W� � Ut Œ0; 1W�/

D Ut Œ0; 1W� C Ut Œ0; 0�.UtC1Œ0; W� � Ut Œ0; 1W�/

D UtC1Œ0; W�;

where the second equality follows by the induction hypothesis and the last equality follows by
Ut Œ0; 0� D 1. By (E.7), we have Pinac.t jn/ D qn

t Ut Œ0; 0� D qn
t .

When t � rBP, by (D.22), we know that for i D 1; : : : ; 2t � 1,

1 �
Pt

�D0 p� C �t;i Œ0; 0�

qt

< 1: (E.8)

By Theorem 8.3 and noting that V0
t;0Œ0� D U0Œ0; t � D

�
K
t

�
> 0, we write

lim
n!1

� log Pinac.t jn/

n

D lim
n!1

� log qn
t

P2t �1
iD0 V0

t;i Œ0�.1 �
Pt

�D0 p� C �t;i Œ0; 0�/n=qn
t

n

D � log qt C lim
n!1

� log
�
V0

t;0Œ0� C
P2t �1

iD1 V0
t;i Œ0�.1 �

Pt
�D0 p� C �t;i Œ0; 0�/n=qn

t

�
n

D � log qt :

The proof is completed. �

Proof ofTheorem 8.6. The recursive formula in Theorem 8.1 can be rewritten into a form similar
to (D.23) as:

N� .t/
n Œc; W� D

X
c0�c

Bi.cI c0; 1 � �t / N� .t�1/
n Œc0; W� NNt

NQc0�c
t ;

where N�
.t/
n Œc; W� D .0 �

.t/
n Œc; W�/ and NNt is a .K C 1/ � .K C 1/ matrix such NNt Œt � 1W; t W� D Nt

and all the other components are zeros. The proof can be completed by following the steps
after (D.23) and using the fact (5.23). �
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Proof ofTheorem 8.7. When t < rBP, we know that �t;i Œ0; 0� D 0 (see (D.18)). So

QPinac.t j Nn/ D exp
 

�Nn

tX
�D0

p�

!
2t �1X
iD0

V0
t;i Œ0�;

where
P2t �1

iD0 V0
t;i Œ0� D Ut Œ0; 0� D 1 by (E.7).

When t � rBP, by (E.8) and V0
t;0Œ0� D U0Œ0; t � D

�
K
t

�
> 0, we write

lim
Nn!1

� log QPinac.t j Nn/

Nn

D lim
Nn!1

� log exp.�Nn.1 � qt //
P2t �1

iD0 V0
t;i Œ0� exp

�
�Nn

�Pt
�D0 p� � �t;i Œ0; 0� � 1 C qt

��
Nn

D 1 � qt :

The proof is completed. �
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